983 resultados para Griego (clásico)
Resumo:
3 hojas : ilustracioens, fotografías a color
Resumo:
12 hojas : ilustraciones, fotografías a color.
Resumo:
27 hojas : ilustraciones, fotografías
Resumo:
La evaluación genética para caracteres de crecimiento pre - destete requiere ajustar modelos animales con efectos maternos (MAM). Tanto la estimación paramétrica de la variabilidad como la evaluación genética mediante MAM son realizadas empleando datos de campo, muchos de los cuales no poseen información completa para todas las variables explicativas maternas. Es común no contar con la identificación de madres (biológicas y/o receptoras), de abuelas maternas y, consecuentemente, de la edad de la madre (EM). Este problema es bien marcado en razas compuestas como Brangus y Braford que tienen políticas para registrar animales de pedigrí "abierto". Además, no existe un consenso sobre cuál es el mejor modelo de predicción, y existen interrogantes sobre la magnitud de los componentes de (co) varianza genético-aditivos y ambientales del modelo de evaluación. La primera investigación de esta tesis consistió en la estimación, mediante métodos bayesianos de los parámetros de dispersión en MAMs con distintas estructuras de (co) varianza, para datos de peso al destete de animales Angus de pedigrí. El análisis se caracterizó por la originalidad en los muestreos de las distribuciones marginales posteriores de las covarianzas genéticas aditivas y de la correlación entre los efectos ambientales maternos permanentes de una vaca y sus hijas también madres. Con el objeto de especificar correctamente la fracción aditiva de las (co) varianzas cuando se desconocen las madres y/o abuelas maternas de los animales con datos, en otro capítulo se desarrollaron MAMs equivalentes que no requieren alargar los vectores de los valores de cría con madres o abuelas fantasmas. Finalmente, se desarrolló un modelo mixto que atenúa el sesgo por error de medición clásico en el efecto EM, e introduce splines penalizadas y una estructura de (co) variación autoregresiva de orden 1 para suavizar las covarianzas residuales Este modelo es apropiado para ajustar datos de animales nacidos por transplante embrionario con madres receptoras desconocidas
Resumo:
La productividad forrajera (PF) es una variable crítica para el manejo y la planificación de los sistemas de producción ganaderos. Sin embargo, las dificultades para cuantificarla a campo y la necesidad de manejar un marco conceptual robusto para utilizarla en la toma de decisiones hacen que habitualmente los sistemas de producción se manejen con una caracterización rudimentaria de esta variable. En esta tesis se desarrolló un sistema de seguimiento de la PF en tiempo real y a la escala de lote, basado en la lógica de la eficiencia en el uso de la radiación (EUR). Primero se diseñó y se puso en funcionamiento una versión preliminar del sistema, y luego se investigaron en mayor detalle dos aspectos críticos de su funcionamiento: la estimación de la fracción de radiación absorbida por el canopeo (fRFAA) a partir de índices de vegetación derivados de imágenes satelitales, y el comportamiento de la EUR ante variaciones del estrés ambiental, el manejo de la defoliación, y la escala temporal de observación. La metodología para implementar la versión preliminar del sistema de seguimiento forrajero se basó en estimar la fRFAA y la EUR. La primera fue estimada como una función no lineal del índice de vegetación normalizado del sensor MODIS. La estimación de la EUR se basó en calibraciones empíricas entre la PF estimada a campo y la radiación absorbida para dos recursos forrajeros: pasturas de loma y bajos de agropiro. Los resultados mostraron que la radiación absorbida predijo datos independientes de PF con precisión aceptable. El sistema fue implementado informáticamente en un software específico denominado Segf. En relación al primer aspecto de mejora del sistema, la estimación de la fRFAA, se estudió la absorción de radiación a campo con una barra de interceptación en cultivos de trigo (utilizados como modelo experimental) y se la correlacionó con distintos índices de vegetación calculados a partir del sensor espectral MODIS. Se encontró que los índices de vegetación explicaron entre 90 y 94 por ciento de las variaciones de fRFAA. El índice de vegetación mejorado presentó una relación más lineal que el clásico índice de vegetación normalizado, posiblemente debido a la ausencia de saturación del primero ante aumentos del área foliar. En relación al segundo aspecto de mejora del sistema, la variabilidad de la EUR, se realizó un experimento de un año sobre una pastura consociada de festuca y alfalfa sometida a distintos tratamientos. La EUR fue más estable que la fRFAA ante cambios de la disponibilidad de recursos y de intensidad de defoliación. Sin embargo, la EUR tendió a disminuir ante estrés hídrico (déficit y exceso), y a aumentar ante defoliación severa y sombreado. Además, la variabilidad de la EUR a lo largo del rebrote de la pastura y entre tratamientos dependió de la escala temporal de observación o cálculo: fue más variable al considerar períodos de 12 días que al considerar todo el período de rebrote o la estación (45 y 90 días respectivamente). Como resultado de la tesis, los productores agropecuarios y sus asesores cuentan con un sistema capaz de estimar mes a mes la PF de sus lotes para una serie temporal de aproximadamente diez años. Actualmente 1.478.000 ha ganaderas están bajo seguimiento mediante un sistema basado en esta tesis. Esto implica un cambio cualitativo de disponibilidad de información y representa una oportunidad para tomar mejores decisiones de manejo, a la vez que concientiza sobre el uso racional del forraje para maximizar su crecimiento. Adicionalmente, la base de datos de PF generada, extraordinariamente amplia en su cobertura espacial y temporal, será de utilidad para trabajos de investigación sobre los patrones espacio-temporales de PF.
Resumo:
p.155-158
Resumo:
p.127-132
Resumo:
La productividad forrajera (PF)es una variable crítica para el manejo y la planificación de los sistemas de producción ganaderos. Sin embargo, las dificultades para cuantificarla a campo y la necesidad de manejar un marco conceptual robusto para utilizarla en la toma de decisiones hacen que habitualmente los sistemas de producción se manejen con una caracterización rudimentaria de esta variable. En esta tesis se desarrolló un sistema de seguimiento de la PF en tiempo real y a la escala de lote, basado en la lógica de la eficiencia en el uso de la radiación (EUR). Primero se diseñó y se puso en funcionamiento una versión preliminar del sistema, y luego se investigaron en mayor detalle dos aspectos críticos de su funcionamiento: la estimación de la fracción de radiación absorbida por el canopeo (fRFAA)a partir de índices de vegetación derivados de imágenes satelitales, y el comportamiento de la EUR ante variaciones del estrés ambiental, el manejo de la defoliación, y la escala temporal de observación. La metodología para implementar la versión preliminar del sistema de seguimiento forrajero se basó en estimar la fRFAA y la EUR. La primera fue estimada como una función no lineal del índice de vegetación normalizado del sensor MODIS. La estimación de la EUR se basó en calibraciones empíricas entre la PF estimada a campo y la radiación absorbida para dos recursos forrajeros: pasturas de loma y bajos de agropiro. Los resultados mostraron que la radiación absorbida predijo datos independientes de PF con precisión aceptable. El sistema fue implementado informáticamente en un software específico denominado Segf. En relación al primer aspecto de mejora del sistema, la estimación de la fRFAA, se estudió la absorción de radiación a campo con una barra de interceptación en cultivos de trigo (utilizados como modelo experimental)y se la correlacionó con distintos índices de vegetación calculados a partir del sensor espectral MODIS. Se encontró que los índices de vegetación explicaron entre 90 y 94 por ciento de las variaciones de fRFAA. El índice de vegetación mejorado presentó una relación más lineal que el clásico índice de vegetación normalizado, posiblemente debido a la ausencia de saturación del primero ante aumentos del área foliar. En relación al segundo aspecto de mejora del sistema, la variabilidad de la EUR, se realizó un experimento de un año sobre una pastura consociada de festuca y alfalfa sometida a distintos tratamientos. La EUR fue más estable que la fRFAA ante cambios de la disponibilidad de recursos y de intensidad de defoliación. Sin embargo, la EUR tendió a disminuir ante estrés hídrico (déficit y exceso), y a aumentar ante defoliación severa y sombreado. Además, la variabilidad de la EUR a lo largo del rebrote de la pastura y entre tratamientos dependió de la escala temporal de observación o cálculo: fue más variable al considerar períodos de 12 días que al considerar todo el período de rebrote o la estación (45 y 90 días respectivamente). Como resultado de la tesis, los productores agropecuarios y sus asesores cuentan con un sistema capaz de estimar mes a mes la PF de sus lotes para una serie temporal de aproximadamente diez años. Actualmente 1.478.000 ha ganaderas están bajo seguimiento mediante un sistema basado en esta tesis. Esto implica un cambio cualitativo de disponibilidad de información y representa una oportunidad para tomar mejores decisiones de manejo, a la vez que concientiza sobre el uso racional del forraje para maximizar su crecimiento. Adicionalmente, la base de datos de PF generada, extraordinariamente amplia en su cobertura espacial y temporal, será de utilidad para trabajos de investigación sobre los patrones espacio-temporales de PF.
Resumo:
tema en el contexto educativo colombiano, llevan a que dos profesores de matemáticas de educación básica y media, se den a la tarea de diseñar y desarrollar una propuesta para la superación de sesgos en el razonamiento probabilístico de sus estudiantes. De esta manera, en el marco de la investigación-acción, se recoge la experiencia y reflexión de tres implementaciones de aula consecutivas: La primera con estudiantes de grado décimo, cuyo énfasis estuvo dado en el enfoque clásico de probabilidad, que llevó a que los estudiantes no tuvieran cambios significativos en sus argumentaciones respecto a los fenómenos de probabilidad; la segunda con estudiantes de grado séptimo, donde el enfoque fue netamente experimental, convirtiéndose en un obstáculo para desarrollar procesos de institucionalización del saber, que permitieran a los estudiantes formalizar algunos conceptos. Las reflexiones suscintas a esta experiencia llevaron al desarrollo de una tercera, también con estudiantes de grado séptimo, pero en otra institución, donde se construyó de manera conjunta y horizontal con los estudiantes una situación problema abierta a los dos enfoques de probabilidad (clásico y experimental) que permitió desarrollar las actividades de acuerdo al avance de cada grupo en el proceso de resolución. De ésta manera se contribuyó en forma significativa a la superación de sesgos probabilísticos, y se consolidó para nosotros un instrumento modelo para la enseñanza de las matemáticas.
Resumo:
La siguiente es una propuesta didáctica para la enseñanza- aprendizaje de la probabilidad clásica en el ámbito escolar. El trabajo se desarrolló con estudiantes de grado octavo, haciendo uso de un problema clásico de la probabilidad, propuesto en el siglo XVII por el Príncipe de Toscana a Galileo Galilei.
Resumo:
Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.
Resumo:
Con el propósito de promover razonamiento probabilístico bajo los enfoques intuitivo, clásico y frecuencial en estudiantes de grado undécimo sin instrucción previa en probabilidad, se realizó un análisis didáctico para proponer la implementación de un conjunto de tareas que permitan el avance en dicho razonamiento. A partir de dicho análisis se establecen una serie de capacidades, errores y dificultades que perfilan una posible ruta de instrucción y que delinean como aporte de esta ponencia una propuesta de instrucción que incluye situaciones asociadas a juegos de tablero, laberintos, aparato de Galton y carreras de juegos electrónicos.
Resumo:
Las matemáticas y la pintura trabajan con ideas. La palabra idea viene del griego ειδω, que significa ver, mirar u observar, y de ειδοζ, que significa figura, forma, aspecto o visión. Detrás de una montaña concreta está la idea de montaña, un dibujo abstracto, unas líneas que permiten reconocer la montaña detrás de las rocas, los pinos o la nieve. La diferencia entre este árbol y árbol, entre un círculo que dibujamos en la pizarra y círculo: la diferencia entre la cosa y la idea de la cosa. En matemáticas y en pintura se buscan las ideas de las cosas.
Resumo:
En este trabajo nos proponemos abordar un problema clásico: la división de un segmento en media y extrema razón. Nuestro interés se centra en ilustrar, con un ejemplo sencillo, los sucesivos pasos a la hora de interpretar una magnitud: primero como una longitud, un área o un volumen; después como un segmento; y, por último, como un número. Evolución que refleja el proceso de creación de la geometría analítica. Por otro lado, estos tres periodos coinciden con las tres fases por las que pasa una disciplina matemática: ingenua, formal (en la que se perfecciona el cálculo simbólico) y una fase crítica (en la que se revisan los fundamentos).
Resumo:
El título corresponde a una cita de M. Morse que elogiaba de esa forma la aparición del libro el año 1941. En la contraportada de la edición española se recogen unas palabras de A. Einstein acerca de esta obra: «Una acertada exposición de los conceptos y métodos funda- mentales de la matemática. Constituye una introducción que puede leer sin dificultad el profano, en tanto que al iniciado en matemáticas le ofrece un panorama general de sus métodos y principios básicos». No son las únicas personalidades que hablan de ¿Qué es la matemática? en términos elogiosos. El Courant/Robbíns, como se le suele nombrar coloquialmente, se ha convertido en poco tiempo en un clásico entre las obras de introducción al pensamiento y métodos de las matemáticas.