984 resultados para Experimental validation
Resumo:
Pancuronium bromide is used with general anesthesia in surgery for muscle relaxation and as an aid to intubation. A high performance liquid chromatographic method was fully validated for the quantitative determination of pancuronium bromide in pharmaceutical injectable solutions. The analytical method was performed on an amino column (Luna 150mm4.6mm, 5m). The mobile phase was composed of acetonitrile:water containing 50mmol L-1 of 1-octane sulfonic acid sodium salt (20:80v/v) with a flow rate of 1.0mL min-1 and ultraviolet (UV) detection at 210nm. The proposed analytical method was compared with that described in the British Pharmacopoeia.
Resumo:
Vecuronium bromide is a neuromuscular blocking agent used for anesthesia to induce skeletal muscle relaxation. HPLC and CZE analytical methods were developed and validated for the quantitative determination of vecuronium bromide. The HPLC method was achieved on an amino column (Luna 150 x 4.6 mm, 5 mu m) using UV detection at 205 nm. The mobile phase was composed of acetonitrile:water containing 25.0 mmol L(-1) of sodium phosphate monobasic (50:50 v/v), pH 4.6 and flow rate of 1.0 mL min(-1). The CZE method was achieved on an uncoated fused-silica capillary (40.0 cm total length, 31.5 cm effective length and 50 mu m i.d.) using indirect UV detection at 230 nm. The electrolyte comprised 1.0 mmol L(-1) of quinine sulfate dihydrate at pH 3.3 and 8.0% of acetonitrile. The results were used to compare both techniques. No significant differences were observed (p > 0.05).
Resumo:
BACKGROUND: Aqueous two-phase micellar systems (ATPMS) are micellar surfactant solutions with physical properties that make them very efficient for the extraction/concentration of biological products. In this work the main proposal that has been discussed is the possible applicability and importance of a novel oscillatory flow micro-reactor (micro-OFR) envisaged for parallel screening and/or development of industrial bioprocesses in ATPMS. Based on the technology of oscillatory flow mixing (OFM), this batch or continuous micro-reactor has been presented as a new small-scale alternative for biological or physical-chemical applications. RESULTS: ATPMS experiments were carried out in different OFM conditions (times, temperatures, oscillation frequencies and amplitudes) for the extraction of glucose-6-phosphate dehydrogenase (G6PD) in Triton X-114/buffer with Cibacron Blue as affinity ligand. CONCLUSION: The results suggest the potential use of OFR, considering this process a promising and new alternative for the purification or pre-concentration of bioproducts. Despite the applied homogenization and extraction conditions have presented no improvements in the partitioning selectivity of the target enzyme, when at rest temperature they have influenced the partitioning behavior in Triton X-114 ATPMS. (C) 2011 Society of Chemical Industry
Resumo:
Exposure to oxygen may induce a lack of functionality of probiotic dairy foods because the anaerobic metabolism of probiotic bacteria compromises during storage the maintenance of their viability to provide benefits to consumer health. Glucose oxidase can constitute a potential alternative to increase the survival of probiotic bacteria in yogurt because it consumes the oxygen permeating to the inside of the pot during storage, thus making it possible to avoid the use of chemical additives. This research aimed to optimize the processing of probiotic yogurt supplemented with glucose oxidase using response surface methodology and to determine the levels of glucose and glucose oxidase that minimize the concentration of dissolved oxygen and maximize the Bifidobacterium longum count by the desirability function. Response surface methodology mathematical models adequately described the process, with adjusted determination coefficients of 83% for the oxygen and 94% for the B. longum. Linear and quadratic effects of the glucose oxidase were reported for the oxygen model, whereas for the B. longum count model an influence of the glucose oxidase at the linear level was observed followed by the quadratic influence of glucose and quadratic effect of glucose oxidase. The desirability function indicated that 62.32 ppm of glucose oxidase and 4.35 ppm of glucose was the best combination of these components for optimization of probiotic yogurt processing. An additional validation experiment was performed and results showed acceptable error between the predicted and experimental results.
Resumo:
High-performance liquid-chromatographic (HPLC) methods were validated for determination of pravastatin sodium (PS), fluvastatin sodium (FVS), atorvastatin calcium (ATC), and rosuvastatin calcium (RC) in pharmaceuticals. Two stability-indicating HPLC methods were developed with a small change (10%) in the composition of the organic modifier in the mobile phase. The HPLC method for each statin was validated using isocratic elution. An RP-18 column was used with mobile phases consisting of methanol-water (60:40, v/v, for PS and RC and 70:30, v/v, for FVS and ATC). The pH of each mobile phase was adjusted to 3.0 with orthophosphoric acid, and the flow rate was 1.0mL/min. Calibration plots showed correlation coefficients (r)0.999, which were calculated by the least square method. The detection limit (DL) and quantitation limit (QL) were 1.22 and 3.08 mu g/mL for PS, 2.02 and 6.12 mu g/mL for FVS, 0.44 and 1.34 mu g/mL for ATC, and 1.55 and 4.70 mu g/mL for RC. Intraday and interday relative standard deviations (RSDs) were 2.0%. The methods were applied successfully for quantitative determination of statins in pharmaceuticals.
Resumo:
High performance liquid chromatographic (HPLC) and UV derivative spectrophotometric (UVDS) methods were developed and validated for the quantitative determination of sotalol hydrochloride in tablets. The HPLC method was performed on a C18 column with fluorescence detection. The excitation and emission wavelengths were 235 and 310nm, respectively. The mobile phase was composed of acetonitrile-water containing 0.1% trietylamine (7:93v/v) and pH adjusted to 4.6 with formic acid. The UVDS method was performed taking a signal at 239.1nm in the first derivative. The correlation coefficients (r) obtained were 0.9998 and 0.9997 for HPLC and UVDS methods, respectively. The proposed methods are simple and adaptable to routine analysis.
Resumo:
A method was optimized for the analysis of omeprazole (OMZ) by ultra-high speed LC with diode array detection using a monolithic Chromolith Fast Gradient RP 18 endcapped column (50 x 2.0 mm id). The analyses were performed at 30 degrees C using a mobile phase consisting of 0.15% (v/v) trifluoroacetic acid (TFA) in water (solvent A) and 0.15% (v/v) TFA in acetonitrile (solvent B) under a linear gradient of 5 to 90% B in 1 min at a flow rate of 1.0 mL/min and detection at 220 nm. Under these conditions, OMZ retention time was approximately 0.74 min. Validation parameters, such as selectivity, linearity, precision, accuracy, and robustness, showed results within the acceptable criteria. The method developed was successfully applied to OMZ enteric-coated pellets, showing that this assay can be used in the pharmaceutical industry for routine QC analysis. Moreover, the analytical conditions established allow for the simultaneous analysis of OMZ metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in the same run, showing that this method can be extended to other matrixes with adequate procedures for sample preparation.
Resumo:
This paper reports theoretical and experimental studies of gas-phase fragmentation reactions of four naturally occurring isoflavones. The samples were analyzed in negative ion mode by direct infusion in ESI-QqQ, ESI-QqTOF and ESI-Orbitrap systems. The MS/MS and MS(n) spectra are in agreement with the fragmentation proposals and high-resolution analyses have confirmed the formulae for each ion observed. As expected, compounds with methoxyl aromatic substitution have showed a radical elimination of center dot CH(3) as the main fragmentation pathway. A second radical loss (center dot H) occurs as previously observed for compounds which exhibit a previous homolytic center dot CH(3) cleavage (radical anion) and involves radical resonance to stabilize the anion formed. However, in this study we suggest another mechanism for the formation of the main ions, on the basis of the enthalpies for each species. Compounds without methoxy substituent dissociate at the highest energies and exhibit the deprotonated molecule as the most intense ion. Finally, energy-resolved experiments were carried out to give more details about the gas-phase dissociation reaction of the isoflavones and the results are in agreement with the theoretical approaches. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Objectives In the present study we investigated the anti nociceptive, anti-inflammatory and antipyretic effects of 7-hydroxycoumarin (7-HC) in animal models. Methods The effects of oral 7-HC were tested against acetic acid-induced writhing, formalin test, tail flick test, complete Freund`s adjuvant (CFA)-induced hypemociception, carrageenan-induced paw oedema, lipopolysaccharide-induced fever and the rota rod test. Key findings 7-HC (3-60 mg/kg) produced a dose-related antinociception against acetic acid-induced writhing in mice and in the formalin test. In contrast, treatment with 7-HC did not prevent thermal nociception in the tail flick test. A single treatment with 7-HC, 60 mg/kg, produced a long-lasting antinociceptive effect against CFA-induced hypernociception, a chronic inflammatory pain stimulus. Notably, at 60 mg/kg per day over 4 days the administration of 7-HC produced a continuous antinociceptive effect against CFA-induced hypernociception. 7-HC (30-120 mg/kg) produced anti-inflammatory and antipyretic effects against carrageenan-induced inflammation and lipopolysaccharide-induced fever, respectively. Moreover, 7-HC was found to be safe with respect to ulcer induction. In the rota rod test, 7-HC-treated mice did not show any motor performance alterations. Conclusions The prolonged antinociceptive and anti-inflammatory effects of 7-HC, in association with its low ulcerogenic activity, indicate that this molecule might be a good candidate for development of new drugs for the control of chronic inflammatory pain and fever.
Resumo:
A simple method was optimized and validated for determination of ractopamine hydrochloride (RAC) in raw material and feed additives by HPLC for use in quality control in veterinary industries. The best-optimized conditions were a C8 column (250 x 4.6 mm id, 5.0 mu m particle size) at room temperature with acetonitrile-100 mM sodium acetate buffer (pH 5.0; 75 + 25, v/v) mobile phase at a flow rate of 1.0 mL/min and UV detection at 275 nm. With these conditions, the retention time of RAC was around 5.2 min, and standard curves were linear in the concentration range of 160-240 mu g/mL (correlation coefficient >= 0.999). Validation parameters, such as selectivity, linearity, limit of detection (ranged from 1.60 to 2.05 mu g/mL), limit of quantification (ranged from 4.26 to 6.84 mu g/mL), precision (relative standard deviation <= 1.87%), accuracy (ranged from 96.97 to 100.54%), and robustness, gave results within acceptable ranges. Therefore, the developed method can be successfully applied for the routine quality control analysis of raw material and feed additives.
Resumo:
A simple, rapid and sensitive analytical procedure for the measurement of imiquimod in skin samples after in vitro penetration studies has been developed and validated. In vitro penetration studies were carried out in Franz diffusion cells with porcine skin. Tape stripping technique was used to separate the stratum corneum (SC) from the viable epidermis and dermis. Imiquimod was extracted from skin samples using a 7:3 (v/v) methanol:acetate buffer (100 mm, pH 4.0) solution and ultrasonication. Imiquimod was analyzed by H-PLC using C(8) column and UV detection at 242 ran. The mobile phase used was acetonitrile:acetate buffer (pH 4.0, 100 mM):diethylamine (30:69.85:0.15, v/v) with flow rate 1 mL/min. Imiquimod eluted at 4.1 min and the running time was limited to 6.0 min. The procedure was linear across the following concentration ranges: 100-2500 ng/mL for both SC and tape-stripped skin and 20-800 ng/mL for receptor solution. Intra-day and inter-day accuracy and precision values were lower than 20% at the limit of quantitation. The recovery values ranged from 80 to 100%. The method is adequate to assay imiquimod from skin samples, enabling the determination of the cutaneous penetration profile of uniquimod by in vitro studies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Copaifera species (Leguminoseae) are popularly known as ""copaiba"" or ""copaiva"". The oleoresins obtained from the trunk of these species have been extensively used in folk medicine and are commercialized in Brazil as crude oil and in several pharmaceutical and cosmetic products. This work reports a complete validated method for the quantification of beta-caryophyllene, alpha-copaene, and alpha-humulene in distinct copaiba oleoresins available commercially. Thus, essential oil samples (100 mu L) were dissolved in 20 mL of hexanes containing internal standard (1,2,4,5-tetramethylbenzene, 3.0 mM) in a 25 mL glass flask. A 1 mu L aliquot was injected into the GC-FID system. A fused-silica capillary column HP-5, coated with 5% phenylmethylsiloxane was used for this study. The developed method gave a good detection response with linearity in the range of 0.10-18.74 mM. Limits of detection and quantitation variety ranged between 0.003 and 0.091 mM. beta-Caryophyllene, alpha-copaene, and alpha-humulene were recovered in a range from 74.71% to 88.31%, displaying RSD lower than 10% and relative errors between -11.69% and -25.30%. Therefore, this method could be considered as an analytical tool for the quality control of different Copaifera oil samples and its products in both cosmetic and pharmaceutical companies. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Aim of the study: The aerial parts of Baccharis dracunculifolia D.C., popularly known as ""alecrim do campo"" are used in folk medicine as anti-inflammatory. The aim of the present study was to evaluate the anti-inflammatory and antinociceptive activities of the crude hydroalcoholic extract obtained from leaves of Baccharis dracunculifolia (BdE), which have not been reported. Matetials and methods: BdE was analyzed by HPLC and in vivo evaluated (doses ranging from 50 to 400 mg/kg, p.o.) by using the acetic acid-induced abdominal constrictions, paw oedema induced by carrageenan or histamine, overt nociception models using capsaicin, glutamate or phorbol myristate acetate (PMA), formalin-induced nociception and mechanical hypernociception induced by carrageenan or complete Freund adjuvant (CFA). As positive controls it was used paracetamol in both acetic acid and formalin tests; dipyrone in capsaicin, glutamate and PMA-induced nociception; indomethacin in CFA and carrageenan-induced hypernociception models. In addition, the in vitro effects of BdE on COX-2 activity and on the activation of NF-kappa B were also evaluated. Results: BdE (50-400 mg/kg, p.o.) significantly diminished the abdominal constrictions induced by acetic acid, glutamate and CFA. Furthermore, BdE also inhibited the nociceptive responses in both phases of formalin-induced nociception. BdE, administered orally, also produced a long-lasting anti-hypernociceptive effect in the acute model of inflammatory pain induced by carrageenan. It was also observed the inhibition of COX-2 activity by BdE. Conclusion: In summary, the data reported in this work confirmed the traditional anti-inflammatory indications of Baccharis dracunculifolia leaves and provided biological evidences that Baccharis dracunculifolia, like Brazilian green propolis, possess antinociceptive and anti-inflammatory activities. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Baccharis dracunculifolia DC (Asteraceae), a native plant from Brazil, commonly known as `Alecrim-do-campo` is widely used in folk medicine to treat inflammation, hepatic disorders and stomach ulcers, and it is the most important botanical source of Southeastern Brazilian propolis, known as green propolis. Its essential oil is composed of non-oxygenated and oxygenated terpenes. In this work, the effects of the essential oil obtained from the aerial parts of R dracunculifolia on gastric ulcers were evaluated. The antiulcer assays were undertaken using the following protocols in rats: nonsteroidal antiinflammatory drug (NSAID)-induced ulcer, ethanol-induced ulcer, stress-induced ulcer, and determination of gastric secretion using ligated pylorus. The treatment in the doses of 50, 250 and 500 mg/kg of R dracunculifolia essential oil significantly diminished the lesion index, the total lesion area and the percentage of lesions in comparison with both positive and negative control groups. With regard to the model of gastric secretion a reduction of gastric juice volume and total acidity was observed, as well as an increase in the gastric pH. No sign of toxicity was observed in the acute toxicity study. Considering the results, it is suggested that the essential oil of B. dracunculifolia could probably be a good therapeutic agent for the development of new phytotherapeutic medicine for the treatment of gastric ulcer. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Zinc is an essential nutritional component required for normal development and maintenance of immune functions. The possible effects of zinc in upregulating the host immune response during the acute and chronic phases of experimental Chagas` disease were evaluated. In young, infected and Zn-supplemented animals, higher concentrations of IFN-gamma and NO were observed. During the chronic phase, decreased concentrations of NO and IFN-gamma were found for older infected animals that received Zn supplementation. For young animals, hearts from Zn-supplemented groups displayed reduced inflammatory infiltrate, heart weight and number of amastigote burdens. For older, infected and Zn-supplemented animals amastigote nests were absent with reduced inflammatory cell infiltrate. This study identifies a potentially novel therapeutic approach that could control the parasite load during acute phase of disease, consequently preventing the deleterious, parasite-elicited responses observed during chronic phase. (C) 2008 Elsevier Inc. All rights reserved.