957 resultados para Chemical vapor deposition (CVD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective solar absorber surface is a fundamental part of a solar thermal collector, as it is responsible for the solar radiation absorption and for reduction of radiation heat losses. The surface’s optical properties, the solar absorption (á) and the emittance (å), have great impact on the solar thermal collector efficiency. In this work, two coatings types were studied: coatings obtained by physical vapor deposition (PVDs) and coatings obtained by projection with different paints (PCs) on aluminum substrates. The most common industrial high performing solar selective absorbers are nowadays produced by vacuum deposition methods, showing some disadvantages, such as lower durability, lower resistance to corrosion, adhesion and scratch, higher cost and complex production techniques. Currently, spectrally selective paints are a potential alternative for absorbing surfaces in low temperature applications, with attractive features such as ease of processing, durability and commercial availability with low cost. Solar absorber surfaces were submitted to accelerated ageing tests, specified in ISO 22975-3. This standard is applicable to the evaluation of the long term behavior and service life of selective solar absorbers for solar collectors working under typical domestic hot water system conditions. The studied coatings have, in the case of PVDs solar absorptions between 0.93 and 0.96 and emittance between 0.07 and 0.10, and in the case of PCs, solar absorptions between 0.91 and 0.93 and emittance between 0.40 and 0.60. In addition to evaluating long term behavior based on artificial ageing tests, it is also important to know the degradation mechanism of different coatings that are currently in the market. Electrochemical impedance spectroscopy (EIS) allows for the assessment of mechanistic information concerning the degradation processes, providing quantitative data as output, which can easily relate to the kinetic parameters of the system. EIS measures were carried out on Gamry FAS2 Femostat coupled with a PCL4 Controller. Two electrolytes were used, 0.5 M NaCl and 0.5 M Na2SO4, and the surfaces were tested at different immersion times up to 4 weeks. The following types of specimens have been tested: Aluminium with/without surface treatment, 3 selective paint coatings (one with a poly(urethane) binder and two with silicone binders) and 2 PVD coatings. Based on the behaviour of the specimens throughout the 4 weeks of immersion, it is possible to conclude that the coating showing the best protective properties corresponds to the selective paint coating with a polyurethane resin followed by the other paint coatings, whereas both the PVD coatings do not confer any protection to the substrate, having a deleterious effect as compared to the untreated aluminium reference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many different photovoltaic technologies are being developed for large-scale solar energy conversion such as crystalline silicon solar cells, thin film solar cells based on a-Si:H, CIGS and CdTe. As the demand for photovoltaics rapidly increases, there is a pressing need for the identification of new visible light absorbing materials for thin-film solar cells. Nowadays there are a wide range of earth-abundant absorber materials that have been studied around the world by different research groups. The current thin film photovoltaic market is dominated by technologies based on the use of CdTe and CIGS, these solar cells have been made with laboratory efficiencies up to 19.6% and 20.8% respectively. However, the scarcity and high cost of In, Ga and Te can limit in the long-term the production in large scale of photovoltaic devices. On the other hand, quaternary CZTSSe which contain abundant and inexpensive elements like Cu, Zn, Sn, S and Se has been a potential candidate for PV technology having solar cell efficiency up to 12.6%, however, there are still some challenges that must be accomplished for this material. Therefore, it is evident the need to find the alternative inexpensive and earth abundant materials for thin film solar cells. One of these alternatives is copper antimony sulfide(CuSbS2) which contains abundant and non-toxic elements which has a direct optical band gap of 1.5 eV, the optimum value for an absorber material in solar cells, suggesting this material as one among the new photovoltaic materials. This thesis work focuses on the preparation and characterization of In6Se7, CuSbS2 and CuSb(S1-xSex)2 thin films for their application as absorber material in photovoltaic structures using two stage process by the combination of chemical bath deposition and thermal evaporation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of microelectrical conduction in microwave plasma assisted chemical vapour deposition (MPCVD) diamond films were investigated using an atomic force microscopy probe, giving a morphological map of the electrical conduction with a spatial resolution better than 500 nm. Also, a cathodoluminescence map with a spatial resolution of about 1 mu m was obtained, giving the possibility of correlating the defects involved in the different carrier transport phenomena. Using micro-Raman analysis several bands could be identified. It is found that the defects responsible for the cathodoluminescence (CL) blue band are responsible for the major part of the electrical conduction in diamond films, while the defects localised in < 111 > surfaces, responsible for the green CL emission, could be involved in a less conductive process. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical and photoconductive features of as-grown microwave-plasma-assisted chemical-vapour deposition (MPCVD) diamond films are studied in correlation with magnetic results obtained from electron paramagnetic resonance (EPR). Also, the morphology is analysed by atomic force microscopy (AFM) showing [111] crystals with a good uniformity of the deposit. The photoresponse as well the current-voltage features observed show an efficient photogeneration of carriers while the optoelectronic characteristics of the metal-diamond junction have an ideality factor of 1.6 together with a rectification ratio of about 10(4) at +/-2.5 V. The nature of the mechanisms responsible for the conduction is discussed. (C) 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of microelectrical conduction in microwave plasma assisted chemical vapour deposition (MPCVD) diamond films were investigated using an atomic force microscopy probe, giving a morphological map of the electrical conduction with a spatial resolution better than 500 nm. Also, a cathodoluminescence map with a spatial resolution of about 1 mu m was obtained, giving the possibility of correlating the defects involved in the different carrier transport phenomena. Using micro-Raman analysis several bands could be identified. It is found that the defects responsible for the cathodoluminescence (CL) blue band are responsible for the major part of the electrical conduction in diamond films, while the defects localised in < 111 > surfaces, responsible for the green CL emission, could be involved in a less conductive process. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical and photoconductive features of as-grown microwave-plasma-assisted chemical-vapour deposition (MPCVD) diamond films are studied in correlation with magnetic results obtained from electron paramagnetic resonance (EPR). Also, the morphology is analysed by atomic force microscopy (AFM) showing [111] crystals with a good uniformity of the deposit. The photoresponse as well the current-voltage features observed show an efficient photogeneration of carriers while the optoelectronic characteristics of the metal-diamond junction have an ideality factor of 1.6 together with a rectification ratio of about 10(4) at +/-2.5 V. The nature of the mechanisms responsible for the conduction is discussed. (C) 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vapor sensors have been used for many years. Their applications range from detection of toxic gases and dangerous chemicals in industrial environments, the monitoring of landmines and other explosives, to the monitoring of atmospheric conditions. Microelectrical mechanical systems (MEMS) fabrication technologies provide a way to fabricate sensitive devices. One type of MEMS vapor sensors is based on mass changing detection and the sensors have a functional chemical coating for absorbing the chemical vapor of interest. The principle of the resonant mass sensor is that the resonant frequency will experience a large change due to a small mass of gas vapor change. This thesis is trying to build analytical micro-cantilever and micro-tilting plate models, which can make optimization more efficient. Several objectives need to be accomplished: (1) Build an analytical model of MEMS resonant mass sensor based on micro-tilting plate with the effects of air damping. (2) Perform design optimization of micro-tilting plate with a hole in the center. (3) Build an analytical model of MEMS resonant mass sensor based on micro-cantilever with the effects of air damping. (4) Perform design optimization of micro-cantilever by COMSOL. Analytical models of micro-tilting plate with a hole in the center are compared with a COMSOL simulation model and show good agreement. The analytical models have been used to do design optimization that maximizes sensitivity. The micro-cantilever analytical model does not show good agreement with a COMSOL simulation model. To further investigate, the air damping pressures at several points on the micro-cantilever have been compared between analytical model and COMSOL model. The analytical model is inadequate for two reasons. First, the model’s boundary condition assumption is not realistic. Second, the deflection shape of the cantilever changes with the hole size, and the model does not account for this. Design optimization of micro-cantilever is done by COMSOL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interface formed between Cu3BiS3 thin films and the buffer layer is a potentially limiting factor to the performance of solar cells based on Al/Cu3BiS3/buffer heterojunctions. The buffer layers of ZnS and In2S3 were grown by coevaporation, and tested as an alternative to the traditional CdS deposited by chemical bath deposition. From the Kelvin probe force microscopy measurements, we found the values of the work function of ZnS, In2S3, and CdS, layers deposited into Cu3BiS3. Additionally, different electronic activity was found for different grain boundaries (GBs), from studies under illumination, we also found the net doping concentration and the density of charged GB states for Cu3BiS3 and Cu3BiS3/CdS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work reports on the synthesis of CrO2 thin films by atmospheric pressure CVD using chromium trioxide (CrO3) and oxygen. Highly oriented (100) CrO2 films containing highly oriented (0001) Cr2O3 were grown onto Al2O3(0001) substrates. Films display a sharp magnetic transition at 375 K and a saturation magnetization of 1.92 mu(B)/f.u., close to the bulk value of 2 mu(B)/f.u. for the CrO2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible. La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique). Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique. L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work we report the preparation details studies on ZnO thin films. ZnO thin films are prepared using cost effective deposition technique viz., Chemical Spray Pyrolysis (CSP). The method is very effective for large area preparation of the ZnO thin film. A new post-deposition process could also be developed to avoid the adsorption of oxygen that usually occurs after the spraying process i.e., while cooling. Studies were done by changing the various deposition parameters for optimizing the properties of ZnO thin film. Moreover, different methods of doping using various elements are also tried to enhance the conductivity and transparency of the film to make these suitable for various optoelectronic applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BiFeO3 thin films free of secondary phases were obtained by the soft chemical solution on Pt(111)/Ti/SiO2/Si substrates after annealing at 500 degrees C for 2 h. The film grown in the (100) direction presented a remanent polarization P-r of 31 mu C/cm(2) at room temperature. Electrical measurements using both quasistatic hysteresis and pulsed polarization confirm the existence of ferroelectricity with a switched polarization of 60-70 mu C/cm(2), Delta P=(P-*-P). Low leakage conduction and an out-of-plane piezoelectric (d(3)) coefficient of 40 pm/V were obtained by the improvement of preparation technology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly (100) oriented Pb0.8Ba0.2TiO3/LaNiO3 structures were grown on LaAlO3(100) substrates by using a wet, soft chemical method and crystallized by the microwave oven technique. The Au/PBT/LaNiO3/LaAlO3 capacitor shows a hysteresis loop with remnant polarization, P-r, of 15 muC/cm(2), and coercive field, E-c, of 47 kV/cm at an applied voltage of 3 V, along with a dielectric constant over 1800. Atomic force microscopy showed that Pb0.8Ba0.2TiO3 is composed of large grains about 300 nm. The experimental results demonstrated that the microwave preparation is rapid, clean, and energy efficient. Therefore, we demonstrated that the combination of the soft chemical method with the microwave process is a promising technique to grow highly oriented thin films with excellent dielectric and ferroelectric properties, which can be used in various integrated device applications. (C) 2004 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: The purpose of this study was to evaluate the surfaces of commercially pure titanium (cp Ti) implants modified by laser beam (LS), without and with hydroxyapatite deposition by the biomimetic method (HAB), without (HAB) and with thermal treatment (HABT), and compare them with implants with surfaces modified by acid treatment (AS) and with machined surfaces (MS), employing topographical and biomechanics analysis. Methods: Forty-five rabbits received 75 implants. After 30, 60, and 90 days, the implants were removed by reverse torque and the surfaces were topographically analyzed. Results: At 30 days, statistically significant difference (P < 0.05) was observed among all the surfaces and the MS, between HAB/HABT and AS and between HAB and LS. At 60 days, the reverse torque of LS, HAB, HABT, and AS differed significantly from MS. At 90 days, difference was observed between HAB and MS. The microtopographic analysis revealed statistical difference between the roughness of LS, HAB, and HABT when compared with AS and MS. Conclusions: It was concluded that the implants LS, HAB, and HABT presented physicochemical and topographical properties superior to those of AS and MS and favored the osseointegration process in the shorter periods. In addition, HAB showed the best results when compared with other surfaces. © 2012 John Wiley & Sons A/S.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissipadores de calor recobertos com filmes de diamante CVD foram desenvolvidos para acoplar a semicondutores, utilizando-se do Laboratório de Deposição de Filmes de Diamante CVD, na UNESP - Campus de Guaratinguetá e o Laboratório de Diamantes da Universidade São Francisco, em Itatiba, SP. Analisou-se o filme de diamante CVD sobre o silício, para emprego como dissipador de calor, porque o filme de diamante CVD pode ter o valor da condutividade térmica até cinco vezes superior ao do cobre e de dez vezes a do alumínio. Os filmes foram obtidos via deposição através de reator de filamento quente, trabalhando-se com vários filamentos retilíneos em paralelo, resultando assim em um processo que visou obter um filme mais uniforme e com grande área de deposição. Os dados para análises da composição química superficial dos filmes foram obtidos por Difração de Raios-X, Dispersão de Energia de Raios-X e para a verificação da morfologia e espessura do filme foi utilizada a Microscopia Eletrônica de Varredura. Para a verificação do comportamento da temperatura sobre o dissipador com o filme de diamante CVD foi utilizada uma câmera de imagem termográfica, marca Fluke, modelo Ti 40 FT. Foram obtidos filmes de 2 e 10 ?m sobre o silício. Estas espessuras ainda não oferecem um desempenho mecânico que o torne autosustentado. Do ponto de vista de desempenho térmico as análises mostraram que, mesmo com pequena espessura, o filme de diamante CVD apresentou bom resultado experimental. Os principais desafios de construção para esse dissipador de calor são a obtenção do filme com espessura acima de um mm e a garantia da qualidade do filme com a repetitividade do processo em cujo caso torna-se necessário definir as dimensões do dissipador antes da deposição do filme.