996 resultados para CARBOHYDRATE-BINDING MODULE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improving the binding affinity and/or stability of peptide ligands often requires testing of large numbers of variants to identify beneficial mutations. Herein we propose a type of mutation that promises a high success rate. In a bicyclic peptide inhibitor of the cancer-related protease urokinase-type plasminogen activator (uPA), we observed a glycine residue that has a positive ϕ dihedral angle when bound to the target. We hypothesized that replacing it with a D-amino acid, which favors positive ϕ angles, could enhance the binding affinity and/or proteolytic resistance. Mutation of this specific glycine to D-serine in the bicyclic peptide indeed improved inhibitory activity (1.75-fold) and stability (fourfold). X-ray-structure analysis of the inhibitors in complex with uPA showed that the peptide backbone conformation was conserved. Analysis of known cyclic peptide ligands showed that glycine is one of the most frequent amino acids, and that glycines with positive ϕ angles are found in many protein-bound peptides. These results suggest that the glycine-to-D-amino acid mutagenesis strategy could be broadly applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein sequence deduced from the open reading frame of a human placental cDNA encoding a cAMP-responsive enhancer (CRE)-binding protein (CREB-327) has structural features characteristic of several other transcriptional transactivator proteins including jun, fos, C/EBP, myc, and CRE-BP1. Results of Southwestern analysis of nuclear extracts from several different cell lines show that there are multiple CRE-binding proteins, which vary in size in cell lines derived from different tissues and animal species. To examine the molecular diversity of CREB-327 and related proteins at the nucleic acid level, we used labeled cDNAs from human placenta that encode two different CRE-binding proteins (CREB-327 and CRE-BP1) to probe Northern and Southern blots. Both probes hybridized to multiple fragments on Southern blots of genomic DNA from various species. Alternatively, when a human placental c-jun probe was hybridized to the same blot, a single fragment was detected in most cases, consistent with the intronless nature of the human c-jun gene. The CREB-327 probe hybridized to multiple mRNAs, derived from human placenta, ranging in size from 2-9 kilobases. In contrast, the CRE-BP1 probe identified a single 4-kilobase mRNA. Sequence analyses of several overlapping human genomic cosmid clones containing CREB-327 sequences in conjunction with polymerase chain reaction indicates that the CREB-327/341 cDNAs are composed of at least eight or nine exons, and analyses of human placental cDNAs provide direct evidence for at least one alternatively spliced exon. Analyses of mouse/hamster-human hybridoma DNAs by Southern blotting and polymerase chain reaction localizes the CREB-327/341 gene to human chromosome 2. The results indicate that there is a dichotomy of CREB-like proteins, those that are related by overall structure and DNA-binding specificity as well as those that are related by close similarities of primary sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is the second leading cause of mortality worldwide. Cancer progression leads to metastasis formation, which accounts for more than ninety percent of cancer-related death. Metastases are more difficult to be surgically removed because of their invasive behavior and shape. In addition, during their transformation journey, they become more and more resistant to anticancer drugs. Significant improvements have been achieved in therapy against cancer in recent years but targeting the metastatic cascade remains the Achilles heel of the cure against cancer. A First step in the metastatic process is the escape of cancer cells from the primary tumor site. This involves an increase in cell motility and the concomitant ability to clear a path through the extracellular matrix. From a therapeutic point of view, inhibition of cell migration is a logical approach to develop anti-metastatic drugs. Our lab previously developed a cell permeable peptide derived from a caspase-3-generaied fragment of the RasGAP protein called TAT-RasGAP317-326. This peptide efficiently and specifically sensitizes cancer cells to chemotherapy- and radiotherapy-induced ceil death, which allows decreasing the anticancer drug doses and eventually their associated side- effects. In the present study we discovered that TAT-RasGAP317.326 also increases cell adhesion which was associated with inhibition of cell migration and invasion into the extracellular matrix. The ability of TAT-RasGAP317.326 to increase ceil adhesion involves the dramatic depolymerization of actin cytoskekton together with redistribution of focal adhesions. We found that the inhibitory effects on migration were mediated by a RhoGAP tumor and metastasis suppressor cailed DLC1 (Deleted in Liver Cancer 1). Moreover. DEC 1 was found to be a direct RasGAP-interacting protein and this interaction requires the RasGAP tryptophan 317 residue, the very first RasGAP residue of TAT-RasGAP317.326. We then evaluated the roie of RasGAP fragments in the in vivo metastatic cascade. We found that breast cancer cells overexpressing the parental RasGAP fragment, to which the TAT-RasGAP317.326 peptide belongs, have a markedly decreased ability to form lung metastases. Unfortunately, we were not able to recapitulate these an ti-metastatic effects when TAT-RasGAP317.326 was injected. However, we later understood that this was due to the fact that TAT-RasGAP317.326 was not properly delivered to the primary tumors. Further work, aimed at better understanding of how TAT-RasGAP317.326 functions, revealed that the ten amino acid TAT-RasGAP317.326 peptide could, be narrowed down to a three amino acid TAT-RasGAP317.329 peptide while keeping its sensitizer activity. In parallel, investigations on the RasGAP-DLCl binding indicated that the arginine linger of the DLC1 GAP domain is required for this interaction, which suggests that TAT-RasGAP317.326 modulates the GAP activity of DLC1. Additional work should be performed to fully elucidate its mechanism of action and render TAT-RasGAP317.326 usable as a tool to fight cancer on two fronts, by improving chemotherapy and preventing metastatic progression. - Le cancer est la deuxième cause de mortalité dans le monde. La formation de métastases est la dernière étape de la progression cancéreuse et représente plus du nonante pour cent des morts induites par le cancer. De par leur morphologie et comportement invasifs, ii est difficile d'avoir recours à la chirurgie pour exciser des métastases. De plus, les cellules cancéreuses en progression deviennent souvent de plus en plus résistantes aux drogues anticancéreuses. Ces dernières années, des avancements significatifs ont contribué à l'amélioration de la lutte contre le cancer. Néanmoins, pouvoir cibler spécifiquement la cascade métastatique demeure cependant le talon d'Achille des thérapies anticancéreuses. Une première étape dans ie processus métastatique est l'évasion des cellules cancéreuses du site de la tumeur primaire. Ceci requiert une augmentation de la motiliié cellulaire couplée à la capacité de se frayer un chemin au sein de la matrice extracelluiaire. D'un point de vue thérapeutique, inhiber la migration cellulaire est une approche attrayante. Notre laboratoire a développé un peptide, nommé TAT-RasGAP317.326 dérivé d'un fragment qui est lui-même le résultat du clivage de la protéine RasGAP par la caspase-3. Ce peptide est capable de pénétrer les cellules cancéreuses et de les sensibiliser spécifiquement à la mort induite par la radiothérapie et la chimiothérapie. La finalité des effets de ce peptide est de pouvoir diminuer les doses des traitements anti-cancéreux et donc des effets secondaires qu'ils engendrent. Dans cette étude, nous avons découvert que TAT-RasGAP317.326 augmente l'adhésion des cellules et inhibe la migration cellulaire ainsi que l'invasion des cellules à travers une matrice extracellulaire. La capacité de TAT-RasGAP317.326 à induire l'adhésion repose sur ia dépolymérisation du cytosquelette d'actine associée à une redistribution des points d'ancrage cellulaire. Nous avons découvert que l'inhibition de ia migration par TAT-RasGAP317.326 nécessitait la présence d'un suppresseur de tumeur et de métastases appelé DLC1 (Deleted in Liver Cancer l), qui par ailleurs s'avère aussi être une protéine RhoGAP. De plus, nous avons aussi trouvé que DLC1 était un partenaire d'interaction de RasGAP et que cette interaction s'effectuait via l'acide aminé tryptophane 317 de RasGAP. qui s'avère être le premier acide aminé du peptide TAT-RasGAP317.326. Nous avons ensuite évalué le rôle joué par certains fragments de RasGAP dans le processus de métastatisation. Dans ce contexte, des cellules de cancer du sein qui sur-expriment un fragment de RasGAP contenant la séquence TAT-RasGAP317.326 ont vu leur potentiel métastatique diminuer drastiquerment. Malheureusement, aucun effet anti-métastatique n'a été obtenu après injection de TAT-RasGAP317.326 dans les souris. Cependant, nous avons réalisé rétrospectivement que TAT-RasGAP317.326 n'était pas correctement délivré à la tumeur primaire, ce qui nous empêche de tirer des conclusions sur le rôle anti-métastatique de ce peptide. La suite de cette étude visant à mieux comprendre comment TAT-RasGAP317.326 agit, a mené à la découverte que les dix acides aminés de TAT-RasGAP317.326 pouvaient être réduits à trois acides aminés, TAT-RasGAP317.329, tout en gardant l'effet sensibilisateur à la chimiothérapie. En visant à élucider le mode d'interaction entre RasGAP et DLC1, nous avons découvert qu'un acide aminé nécessaire à l'activité GAP de DLC1 était requis pour lier RasGAP, ce qui laisse présager que TAT-RasGAp317.32c, module i'activité GAP de DLC1. Des travaux supplémentaires doivent encore être effectués pour complètement élucider les mécanismes d'action de TAT-RasGAP317.326 et afin de pouvoir l'utiliser comme un outil pour combattre le cancer sur deux fronts, en améliorant les chimiothérapies et en inhibant la formation de métastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the frequency of the mutations at positions -550 and -221 of the mannose-binding lectin (MBL) gene in a sample of 75 human T-cell lymphotropic virus (HTLV) infected patients and 96 HTLV seronegative controls, in order to evaluate the occurrence of a possible association between the polymorphism and HTLV infection. A sequence specific primer-polymerase chain reaction was used for discrimination of the polymorphism. The analysis of allele frequencies at position -550 did not show any significant differences between HTLV infected group and controls, but there was a significant difference at position -221. The comparative analysis of haplotypes frequencies were not significant, but the genotype frequencies between the two groups, revealed a higher prevalence of genotype LYLX (25.3%), associated with medium and low MBL serum levels among HTLV infected subjects. The odds ratio estimation demonstrated that the presence of genotype LYLX was associated with an increased risk of HTLV infection (p = 0.0096; 1.38 < IC95% < 7.7605). There was no association between proviral load and the promoter polymorphism, but when promoter and exon 1 mutations were matched, it was possible to identify a significant higher proviral load among HTLV infected individuals carrying haplotypes correlated to low serum levels of MBL. The present study shows that the polymorphism in the promoter region of the MBL gene may be a genetic marker associated with HTLV infection, and emphasizes the need for further studies to determinate if the present polymorphism have any impact on diseases linked to HTLV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary zone electrophoresis (CZE) with UV detection has been widely used for the determination of carbohydrate-deficient transferrin (CDT), an indirect marker of the chronic alcohol consumption (≥60-80g/day). A commercially available method (CEofix? CDT kit), containing a bilayer anionic coating, allows for the analysis of CDT with a high resolution between transferrin (Tf) glycoforms with reduced protein adsorption onto the capillary wall. Although widely used in routine analysis, this procedure presents some limitations in terms of selectivity and sensitivity which may be overcome with mass spectrometry (MS). However, the available method is not MS-compatible due to the non-volatile coating as well as the phosphate and borate buffers present in the background electrolyte (BGE). This study firstly consisted in developing MS-compatible separation conditions, i.e., coating and BGE compositions. Numerous cationic, neutral, and anionic coatings were evaluated in combination with BGEs covering a broad range of pH values. A bilayer coating composed of a cationic layer of 10% polybrene (m/v) and an anionic layer of 10% dextran sulfate (m/v) combined with a BGE composed of 20mM ammonium acetate at pH 8.5 provided the best results in terms of glycoforms' resolution, efficiency, adsorption reduction, migration times' repeatability, and coating stability. The method was then transferred to CZE-MS after investigations of the electrospray ionization (ESI) source, equipped with a sheath-flow interface, and the time-of-flight (TOF/MS) parameters. A successful MS detection of tetrasialo-Tf was obtained during infusion, while the experiments highlighted the challenges and issues encountered with intact glycoprotein analysis by CZE-ESI-MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na,K-ATPase, the main active transport system for monovalent cations in animal cells, is responsible for maintaining Na(+) and K(+) gradients across the plasma membrane. During its transport cycle it binds three cytoplasmic Na(+) ions and releases them on the extracellular side of the membrane, and then binds two extracellular K(+) ions and releases them into the cytoplasm. The fourth, fifth, and sixth transmembrane helices of the alpha subunit of Na,K-ATPase are known to be involved in Na(+) and K(+) binding sites, but the gating mechanisms that control the access of these ions to their binding sites are not yet fully understood. We have focused on the second extracellular loop linking transmembrane segments 3 and 4 and attempted to determine its role in gating. We replaced 13 residues of this loop in the rat alpha1 subunit, from E314 to G326, by cysteine, and then studied the function of these mutants using electrophysiological techniques. We analyzed the results using a structural model obtained by homology with SERCA, and ab initio calculations for the second extracellular loop. Four mutants were markedly modified by the sulfhydryl reagent MTSET, and we investigated them in detail. The substituted cysteines were more readily accessible to MTSET in the E1 conformation for the Y315C, W317C, and I322C mutants. Mutations or derivatization of the substituted cysteines in the second extracellular loop resulted in major increases in the apparent affinity for extracellular K(+), and this was associated with a reduction in the maximum activity. The changes produced by the E314C mutation were reversed by MTSET treatment. In the W317C and I322C mutants, MTSET also induced a moderate shift of the E1/E2 equilibrium towards the E1(Na) conformation under Na/Na exchange conditions. These findings indicate that the second extracellular loop must be functionally linked to the gating mechanism that controls the access of K(+) to its binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Mannan-binding lectin (MBL) acts as a pattern-recognition molecule directed against oligomannan, which is part of the cell wall of yeasts and various bacteria. We have previously shown an association between MBL deficiency and anti-Saccharomyces cerevisiae mannan antibody (ASCA) positivity. This study aims at evaluating whether MBL deficiency is associated with distinct Crohn's disease (CD) phenotypes. METHODS: Serum concentrations of MBL and ASCA were measured using ELISA (enzyme-linked immunosorbent assay) in 427 patients with CD, 70 with ulcerative colitis, and 76 healthy controls. CD phenotypes were grouped according to the Montreal Classification as follows: non-stricturing, non-penetrating (B1, n=182), stricturing (B2, n=113), penetrating (B3, n=67), and perianal disease (p, n=65). MBL was classified as deficient (<100 ng/ml), low (100-500 ng/ml), and normal (500 ng/ml). RESULTS: Mean MBL was lower in B2 and B3 CD patients (1,503+/-1,358 ng/ml) compared with that in B1 phenotypes (1,909+/-1,392 ng/ml, P=0.013). B2 and B3 patients more frequently had low or deficient MBL and ASCA positivity compared with B1 patients (P=0.004 and P<0.001). Mean MBL was lower in ASCA-positive CD patients (1,562+/-1,319 ng/ml) compared with that in ASCA-negative CD patients (1,871+/-1,320 ng/ml, P=0.038). In multivariate logistic regression modeling, low or deficient MBL was associated significantly with B1 (negative association), complicated disease (B2+B3), and ASCA. MBL levels did not correlate with disease duration. CONCLUSIONS: Low or deficient MBL serum levels are significantly associated with complicated (stricturing and penetrating) CD phenotypes but are negatively associated with the non-stricturing, non-penetrating group. Furthermore, CD patients with low or deficient MBL are significantly more often ASCA positive, possibly reflecting delayed clearance of oligomannan-containing microorganisms by the innate immune system in the absence of MBL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the prevalence of mutations in the -550 (H/L) and -221 (X/Y) mannose-binding lectin (MBL) gene promoter regions and their impact on infection by human immunodeficiency virus 1 (HIV-1) in a population of 128 HIV-1 seropositive and 97 seronegative patients. The allele identification was performed through the sequence-specific primer polymerase chain reaction method, using primer sequences specific to each polymorphism. The evolution of the infection was evaluated through CD4+ T-lymphocyte counts and plasma viral load. The allele and haplotype frequencies among HIV-1-infected patients and seronegative healthy control patients did not show significant differences. CD4+ T-lymphocyte counts showed lower levels among seropositive patients carrying haplotypes LY, LX and HX, as compared to those carrying the HY haplotype. Mean plasma viral load was higher among seropositive patients with haplotypes LY, LX and HX than among those carrying the HY haplotype. When promoter and exon 1 mutations were matched, it was possible to identify a significantly higher viral load among HIV-1 infected individuals carrying haplotypes correlated to low serum levels of MBL. The current study shows that haplotypes related to medium and low MBL serum levels might directly influence the evolution of viral progression in patients. Therefore, it is suggested that the identification of haplotypes within the promoter region of the MBL gene among HIV-1 infected persons should be further evaluated as a prognostic tool for AIDS progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bacteroides fragilis ATCC strain was grown in a synthetic media with contrasting redox potential (Eh) levels [reduced (-60 mV) or oxidised (+100mV)] and their adhesion capacity to extracellular matrix components was evaluated. The strain was capable of adhering to laminin, fibronectin, fibronectin + heparan sulphate and heparan sulphate. A stronger adherence to laminin after growing the strain under oxidising conditions was verified. Electron microscopy using ruthenium red showed a heterogeneous population under this condition. Dot-blotting analyses confirmed stronger laminin recognition by outer membrane proteins of cells cultured at a higher Eh. Using a laminin affinity column, several putative laminin binding proteins obtained from the cultures kept under oxidising (60 kDa, 36 kDa, 25 kDa and 15 kDa) and reducing (60 kDa) conditions could be detected. Our results show that the expression of B. fragilis surface components that recognise laminin are influenced by Eh variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histoplasma capsulatum is an intracellular fungal pathogen that causes respiratory and systemic disease by proliferating within phagocytic cells. The binding of H. capsulatum to phagocytes may be mediated by the pathogen's cell wall carbohydrates, glucans, which consist of glucose homo and hetero-polymers and whose glycosydic linkage types differ between the yeast and mycelial phases. The ±-1,3-glucan is considered relevant for H. capsulatum virulence, whereas the ²-1,3-glucan is antigenic and participates in the modulation of the host immune response. H. capsulatum cell wall components with lectin-like activity seem to interact with the host cell surface, while host membrane lectin-like receptors can recognize a particular fungal carbohydrate ligand. This review emphasizes the relevance of the main H. capsulatum and host carbohydrate-driven interactions that allow for binding and internalization of the fungal cell into phagocytes and its subsequent avoidance of intracellular elimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubule-associated protein 2 (MAP2) exists in both high- and low-molecular mass isoforms, each of which has a tubulin-binding domain consisting of 3 imperfect tandem repeats of 31 amino acids containing a more highly conserved 18 amino acid 'core' sequence. We describe here a novel form of low molecular mass MAP2 (MAP2c) that contains an additional 4th repeat of this tubulin-binding motif. Like the 3 previously known repeat sequences, this 4th copy is highly conserved between MAP2 and the two other known members of the same gene family, tau and MAP4. In each of these three genes the additional 4th repeat is inserted between the 1st and 2nd repeats of the 3-repeat form of the molecule. Experiments with brain cell cultures, in which the relative proportions of neurons and glia had been manipulated by drug treatment, showed that 4-repeat MAP2c is associated with glial cells whereas 3-repeat MAP2c is expressed in neurons. Whereas 3-repeat MAP2c is expressed early in development and then declines, the level of 4-repeat MAP2c increases later in development, corresponding to the relatively late differentiation of glial cells compared to neurons. When transfected into non-neuronal cells, the 4-repeat version of MAP2c behaved indistinguishably from the 3-repeat form in stabilising and rearranging cellular microtubules. The presence of an additional 4th repeat of the tubulin-binding motif in all three members of the MAP2 gene family suggests that this variant arose prior to their differentiation from an ancestral gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to understand the structural flexibility and curvature of the E2 protein of human papillomavirus type 18 using molecular dynamics (6 ns). E2 is required for viral DNA replication and its disruption could be an anti-viral strategy. E2 is a dimer, with each monomer folding into a stable open-faced β-sandwich. We calculated the mobility of the E2 dimer and found that it was asymmetric. These different mobilities of E2 monomers suggest that drugs or vaccines could be targeted to the interface between the two monomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA sequence variation has been associated with quantitative changes in molecular phenotypes such as gene expression, but its impact on chromatin states is poorly characterized. To understand the interplay between chromatin and genetic control of gene regulation, we quantified allelic variability in transcription factor binding, histone modifications, and gene expression within humans. We found abundant allelic specificity in chromatin and extensive local, short-range, and long-range allelic coordination among the studied molecular phenotypes. We observed genetic influence on most of these phenotypes, with histone modifications exhibiting strong context-dependent behavior. Our results implicate transcription factors as primary mediators of sequence-specific regulation of gene expression programs, with histone modifications frequently reflecting the primary regulatory event.