999 resultados para Art outsider
Resumo:
本文应用自适应共振理论中ART-2神经网络进行移动机器人环境障碍模式识别。ART-2神经网络在处理单方向渐变的模式输入时具有模式漂移的特点,机器人在静态环境中运动依赖这种特点,但在动态环境中模式漂移的特点却会对机器人的安全造成威胁。为此,设计了一种改进的ART-2神经网络,使得移动机器人同时适应在静态和动态环境中安全运动。
Resumo:
Is an interactive new media art installation that explores how the sharing of images, normally hidden on mobile phones, can reveal more about people's sense of place and this ultimately shared experience. Traditional views on sense of place, as exemplified by Wagner (1972) and Relph (1976), characterise the experience as a fusion of meaning, act and context. Indeed, Relph suggests that it is not just the identity of a place that is important, but also the identity that a person or group has with that place, in particular whether they are experiencing it as an ‘insider’ or ‘outsider’. This work stimulates debate concerning the impact of technology on sense of place. Technology offers a number of bridges between the real and virtual worlds, but in so doing places an increased tension on the sense of place and subsequently the identity of the individual. This, coupled with the increased use of camera phones, has enabled the documentation of all aspects of our lives, the things we do, the objects we encounter and the places we inhabit. The installation taps into these hidden electronic resources by letting people share their sense of place associated with a large scale event. The work explores the changing nature of the sense of place of performers, visitors and residents over the duration of the event. Interaction with the installation will transform the viewer into performer, echoing Relph’s insider-outsider dichotomy
Resumo:
Lee M.H. and Nicholls H.R., Tactile Sensing for Mechatronics: A State of the Art Survey, Mechatronics, 9, Jan 1999, pp1-31.
Resumo:
To be presented at SIG/ISMB07 ontology workshop: http://bio-ontologies.org.uk/index.php To be published in BMC Bioinformatics. Sponsorship: JISC
Resumo:
Breen Smyth, M. (2005). Insider Outsider issues in researching violence and divided societies. In E. Porter, G. Robinson, M. Smyth, A. Schnabel, and E. Osaghae (Eds.), Researching Conflict in Africa: Insights and Experiences (pp.9-23). Tokyo: United Nations University Press. RAE2008
Resumo:
Sexton, J. (2008). From Art to Avant Garde? Television, Formalism and the Arts Documentary in 1960's Britain. In L. Mulvey and J. Sexton (Eds.), Experimental British Television (pp.89-105). Manchester: Manchester University Press. RAE2008
Resumo:
Wydział Neofilologii: Instytut Filologii Germańskiej
Resumo:
ACT is compared with a particular type of connectionist model that cannot handle symbols and use non-biological operations that cannot learn in real time. This focus continues an unfortunate trend of straw man "debates" in cognitive science. Adaptive Resonance Theory, or ART, neural models of cognition can handle both symbols and sub-symbolic representations, and meets the Newell criteria at least as well as these models.
Resumo:
Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus attention on those portions of bottom-up inputs that match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples show that attention to early critical features may later distort memory representations during online fast learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by directing attention away from previously attended features after the system makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Twodimensional simulation examples demonstrate the evolution of bARTMAP memories as they are learned online. Benchmark simulations show that featural biasing also improves performance on large-scale examples. One example, which predicts movie genres and is based, in part, on the Netflix Prize database, was developed for this project. Both first principles and consistent performance improvements on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website: http://techlab.bu.edu/bART/.
Resumo:
In this paper, we introduce the Generalized Equality Classifier (GEC) for use as an unsupervised clustering algorithm in categorizing analog data. GEC is based on a formal definition of inexact equality originally developed for voting in fault tolerant software applications. GEC is defined using a metric space framework. The only parameter in GEC is a scalar threshold which defines the approximate equality of two patterns. Here, we compare the characteristics of GEC to the ART2-A algorithm (Carpenter, Grossberg, and Rosen, 1991). In particular, we show that GEC with the Hamming distance performs the same optimization as ART2. Moreover, GEC has lower computational requirements than AR12 on serial machines.
Resumo:
This paper introduces ART-EMAP, a neural architecture that uses spatial and temporal evidence accumulation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and unsupervised learning and a medium-term memory process to accomplish stable pattern category recognition in a noisy input environment. The ART-EMAP system features (i) distributed pattern registration at a view category field; (ii) a decision criterion for mapping between view and object categories which can delay categorization of ambiguous objects and trigger an evidence accumulation process when faced with a low confidence prediction; (iii) a process that accumulates evidence at a medium-term memory (MTM) field; and (iv) an unsupervised learning algorithm to fine-tune performance after a limited initial period of supervised network training. ART-EMAP dynamics are illustrated with a benchmark simulation example. Applications include 3-D object recognition from a series of ambiguous 2-D views.
Resumo:
A model which extends the adaptive resonance theory model to sequential memory is presented. This new model learns sequences of events and recalls a sequence when presented with parts of the sequence. A sequence can have repeated events and different sequences can share events. The ART model is modified by creating interconnected sublayers within ART's F2 layer. Nodes within F2 learn temporal patterns by forming recency gradients within LTM. Versions of the ART model like ART I, ART 2, and fuzzy ART can be used.
Resumo:
A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3-D object recognition from a series of ambiguous 2-D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data. A concluding set of simulations demonstrate ART-EMAP performance on a difficult 3-D object recognition problem.
Resumo:
Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic: intersection (∩) with the fuzzy intersection (∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric: theory in which the fuzzy inter:>ec:tion and the fuzzy union (∨), or component-wise maximum, play complementary roles. Complement coding preserves individual feature amplitudes while normalizing the input vector, and prevents a potential category proliferation problem. Adaptive weights :otart equal to one and can only decrease in time. A geometric interpretation of fuzzy AHT represents each category as a box that increases in size as weights decrease. A matching criterion controls search, determining how close an input and a learned representation must be for a category to accept the input as a new exemplar. A vigilance parameter (p) sets the matching criterion and determines how finely or coarsely an ART system will partition inputs. High vigilance creates fine categories, represented by small boxes. Learning stops when boxes cover the input space. With fast learning, fixed vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers memories against recoding by noisy inputs. Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and prediction problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly minimizing predictive error and maximizing code compression. Low vigilance maximizes compression but may therefore cause very different inputs to make the same prediction. When this coarse grouping strategy causes a predictive error, an internal match tracking control process increases vigilance just enough to correct the error. ARTMAP automatically constructs a minimal number of recognition categories, or "hidden units," to meet accuracy criteria. An ARTMAP voting strategy improves prediction by training the system several times using different orderings of the input set. Voting assigns confidence estimates to competing predictions given small, noisy, or incomplete training sets. ARPA benchmark simulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to Salzberg's Nested Generalized Exemplar (NGE) and to Simpson's Fuzzy Min-Max Classifier (FMMC); and concludes with a summary of ART and ARTMAP applications.