676 resultados para Acartia
Resumo:
The SES_GR2_Copepod Ingestion on ciliates and phytoplankton dataset is based on samples taken during August-September 2008 in Ionian Sea, Libyan Sea, Southern Aegean Sea and Northern Aegean Sea. Ingestion rates were estimated from experiments performed at all the third priority stations during the cruise according to DoW of Sesame project. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 100 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Clausocalanus furcatus, Oithona spp. Temora stylifera and Acartia spp according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000).
Resumo:
This dataset based on samples taken during October 2008 in Dardanelles Straits, Marmara Sea and Bosporus Straits at the third priority stations. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 50 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Oithona spp., Clausocalanus furcatus, Acartia clausi and Oncaea spp. and in one cladoceran species Penilia avirostris according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000). Egg production rates of the dominant calanoid copepods were determined by incubation of fertilised females (eggs/female/day) collected in the 0-20m layer. Copepod egg production was measured for the copepods Clausocalanus furcatus, Paracalanus parvus,Acaria clausi. On board experiments for the estimation of copepod egg production were taken place. For the estimation of copepod production (mg/m**2/day), lengths (copepods and eggs) were converted to body carbon (Hopcroft et al., 1998) and production was estimated from biomass and weight-specific egg production rates, by assuming that those rates are representative for juvenile specific growth rates (Berggreen et al., 1988).
Resumo:
Vertical distribution of mesoplankton was studied over a single season in 2001 at two sites in the western and eastern parts of the northern margin of the North Atlantic gyre. Plankton was sampled both with use of BR 113/140 net and observed from the Mir deep-sea manned submersible. In near-slope waters southeast of Newfoundland (Titanic Polygon) there occurred intensive interaction between subtropical and sub-polar waters and plankton communities. The subtropical gyre community being more mature from the succession viewpoint created a ''net'' of carnivores and scavengers (shrimp and smaller animals) feeding plankton supplied from the north and thus increasing their own biomass. Due to features of hydrological conditions in 2001 in contrast to other years, the plankton supplied from the north was dominated by small copepods, while abundance of larger Calanus hyperboreus was small. Perhaps due to this fact, abundance of macroplanktonic shrimp decreased, while abundance of mesoplanktonic carnivores (Themisto, Sagitta, and Pareuchaeta) increased. In East Atlantic, within the Porcupine abyssal plain (Bismark Polygon) contrasts in frontal boundaries decreased and community interaction became less expressed. While vertical distribution of plankton at Titanic Polygon was characterized by a series of extraordinary features, distribution at Bismark Polygon was much more ordinary.
Resumo:
The "CoMSBlack92" dataset is based on samples collected in the summer of 1992 along the Bulgarian coast including coastal and open sea areas. The whole dataset is composed of 79 samples (28 stations) with data of zooplankton species composition, abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at standard depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 ?m. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling volume was estimated by multiplying the mouth area with the wire length. The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m**3.
Resumo:
The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected materia was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).
Resumo:
The SESRU01_mesozooplankton dataset contains data collected in April 2008 at 19 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Juday net (mesh size 180 ?m, mouth area 0.1 m**2). Integrated samples were taken from the lower boundary of the oxic zone to the surface, stratified samples were taken according to CTD-profiles: samples were taken from the following depth strata: 1) the upper mixed layer (UML); 2) the layer of high temperature gradients (from the upper boundary of thermocline to the depth of 8 deg C temperature); 3) cold Intermediate layer (CIL) - the layer with the T< 8 deg C; 4) from the depth of sigma theta = 15.8 (oxycline) to the lower boundary of CIL; 5) from the depth of sigma theta = 16.2 to the depth of sigma theta = 15.8. Samples were analysed for zooplankton species and stage composition and abundance. Juday net: Vertical tows of a closing Juday net, with mouth area 0.1 m**2, mesh size 180µm. Samples were taken from different layers. Towing speed: 1m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area by the wire length. The entire sample or an aliquot (1/2 to1/4) was analyzed under the binocular microscope. Mesozooplankton species and stages were identified and enumerated; meroplankton were identified and enumerated at higher taxonomic level. Taxonomic identification was done at Shirshov Institute of Oceanology using the relevant taxonomic literature (Rose, 1933, Brodsky, 1950, and Internet resources).
Resumo:
Size-, species- and age composition of zooplankton was studied in the ice-covered Chupa Inlet (White Sea, Kandalksha Bay) in early April 2002. The species composition of zooplankton was poor and typical for the end of the winter season, and abundance and biomass were considerably lower than in summer. In terms of biomass two species of copepods (Calanus glacialis and Pseudocalanus minutus) prevailed. Both species were already feeding on ice algae available and began to reproduce. Such early reproduction of Calanus glacialis was noted in the White Sea for the first time. Obtained results show that secondary production in the White Sea starts well before thawing of the ice cover.
(Table 1) Relative contribution of main species into zooplankton biomass in White Sea surface waters