934 resultados para potential energy curve
Resumo:
Tsunamis occur quite frequently following large magnitude earthquakes along the Chilean coast. Most of these earthquakes occur along the Peru-Chile Trench, one of the most seismically active subduction zones of the world. This study aims to understand better the characteristics of the tsunamis triggered along the Peru-Chile Trench. We investigate the tsunamis induced by the Mw8.3 Illapel, the Mw8.2 Iquique and the Mw8.8 Maule Chilean earthquakes that happened on September 16th, 2015, April 1st, 2014 and February 27th, 2010, respectively. The study involves the relation between the co-seismic deformation and the tsunami generation, the near-field tsunami propagation, and the spectral analysis of the recorded tsunami signals in the near-field. We compare the tsunami characteristics to highlight the possible similarities between the three events and, therefore, attempt to distinguish the specific characteristics of the tsunamis occurring along the Peru-Chile Trench. We find that these three earthquakes present faults with important extensions beneath the continent which result in the generation of tsunamis with short wavelengths, relative to the fault widths involved, and with reduced initial potential energy. In addition, the presence of the Chilean continental margin, that includes the shelf of shallow bathymetry and the continental slope, constrains the tsunami propagation and the coastal impact. All these factors contribute to a concentrated local impact but can, on the other hand, reduce the far-field tsunami effects from earthquakes along Peru-Chile Trench.
Resumo:
This work explores regulation of forward speed, step length, and slope walking for the passive-dynamic class of bipedal robots. Previously, an energy-shaping control for regulating forward speed has appeared in the literature; here we show that control to be a special case of a more general time-scaling control that allows for speed transitions in arbitrary time. As prior work has focused on potential energy shaping for fully actuated bipeds, we study in detail the shaping of kinetic energy for bipedal robots, giving special treatment to issues of underactuation. Drawing inspiration from features of human walking, an underactuated kinetic-shaping control is presented that provides efficient regulation of walking speed while adjusting step length. Previous results on energetic symmetries of bipedal walking are also extended, resulting in a control that allows regulation of speed and step length while walking on any slope. Finally we formalize the optimal gait regulation problem and propose a dynamic programming solution seeded with passive-dynamic limit cycles. Observations of the optimal solutions generated by this method reveal further similarities between passive dynamic walking and human locomotion and give insight into the structure of minimum-effort controls for walking.
Resumo:
O contínuo crescimento da população mundial aumenta a demanda e a competição por energia, colocando grande esforço sobre as fontes de energia não renováveis existentes. Devido a isso, políticas globais para geração de energias renováveis e menos poluentes estão sendo fortalecidas, além de promoverem o desenvolvimento de novas tecnologias. Várias formas de conversão de energia foram desenvolvidas no decorrer dos anos, com destaque para os conversores de energia das correntes a base de turbinas, que demonstram alta capacidade de conversão energética e já se encontram em funcionamento. O modelo tridimensional TELEMAC3D foi utilizado para a investigação dos processos hidrodinâmicos. Este modelo foi acoplado ao módulo de conversão de energia para as análises nos locais de maior viabilidade e conversão energética na Plataforma Continental do Sul do Brasil. A região de estudo demonstrou possuir duas regiões com alto potencial para a exploração da energias das correntes marinhas, entretanto a região mais viável para a instalação de conversores de corrente é a região norte delimitada entre o Farol da Conceição e o Farol da Solidão, podendo atingir potência média de 10kW=Dia, e alcançando valores integrados de 3:5MW=Ano. Através de uma análise da sazonalidade foram observados, durante a primavera os períodos mais energéticos em ambas as regiões estudadas. As maiores intensidades de conversão de energia foram estimadas com variabilidade temporal de 16 dias, demonstrando alta correlação com eventos associados à passagem de frentes meteorológicas na região. O sítio da região norte, com a presença de barreiras que representam a forma dos conversores, se destaca mantendo boa conversão durante os eventos de ótimo potencial energético. Esta melhora se deve ao efeito de intensificação do campo de correntes associado à presença da estrutura física que otimiza a eficiência do sítio. Não foram observadas diferenças significativas no padrão de variabilidade temporal das simulações estudadas, indicando que a presença das barreiras não induz grandes alterações no padrão temporal da conversão de energia nas escalas temporais analisadas neste trabalho. Os eventos de alta geração de energia foram relacionados a incidência de fortes ventos de quadrante sul e norte, indicando que pelo formato e disposição dos conversores, ventos de sudoeste e norte podem favorecer ótimos eventos de conversão de energia. As simulações dos sítios de conversão demonstraram alta capacidade de geração energética, com quatro eventos de extrema geração de energia. Entretanto, o sítio da região norte demonstrou eficiência superior a 59,39 GWh ao ano, equivalendo a 0.22% do consumo energético do estado do Rio Grande do Sul no ano de 2010.
Resumo:
Recent realistic high resolution modeling studies show a net increase of submesoscale activity in fall and winter when the mixed layer depth is at its maximum. This submesoscale activity increase is associated with a reduced deepening of the mixed layer. Both phenomena can be related to the development of mixed layer instabilities, which convert available potential energy into submesoscale eddy kinetic energy and contribute to a fast restratification by slumping the horizontal density gradient in the mixed layer. In the present work, the mixed layer formation and restratification was studied by uniformly cooling a fully turbulent zonal jet in a periodic channel at different resolutions, from eddy resolving (10 km) to submesoscale permitting (2 km). The effect of the submesoscale activity, highlighted by these different horizontal resolutions, was quantified in terms of mixed layer depth, restratification rate and buoyancy fluxes. Contrary to many idealized studies focusing on the restratification phase only, this study addresses a continuous event of mixed layer formation followed by its complete restratification. The robustness of the present results was established by ensemble simulations. The results show that, at higher resolution, when submesoscale starts to be resolved, the mixed layer formed during the surface cooling is significantly shallower and the total restratification almost three times faster. Such differences between coarse and fine resolution models are consistent with the submesoscale upward buoyancy flux, which balances the convection during the formation phase and accelerates the restratification once the surface cooling is stopped. This submesoscale buoyancy flux is active even below the mixed layer. Our simulations show that mesoscale dynamics also cause restratification, but on longer time scales. Finally, the spatial distribution of the mixed layer depth is highly heterogeneous in the presence of submesoscale activity, prompting the question of whether it is possible to parameterize submesoscale effects and their effects on the marine biology as a function of a spatially-averaged mixed layer depth.
Resumo:
Com o aumento constante de procura de recursos naturais por parte dos vários setores da sociedade é urgente encontrar soluções para reduzir o seu consumo sem se travar a expansão demográfica que se tem vindo a sentir nos grandes centros urbanos. É através da implementação de medidas de sustentabilidade e pelo aumento da eficiência de utilização desses recursos que se tem vindo a combater esta tendência cada vez maior de consumismo global, sendo isto apenas possível com a implementação de ferramentas tecnológicas avançadas que permitem estabelecer limites ao considerado eficiente e premiando, em termos financeiros e de imagem de marketing, as entidades que o alcancem. O LEED é um sistema de certificação de sustentabilidade voluntário de edifícios residenciais e comerciais que estabelece métricas de comparação de parâmetros indicadores de consumos energéticos, hídricos e de materiais em todo o ciclo de vida do edifício e que tem vindo a ganhar destaque em crescendo a nível mundial. Esta dissertação teve como objetivo comparar a performance de consumo energético no âmbito do sistema LEED com a do sistema de certificação energética de edifícios nacional (SCE) de um grande edifício de serviços, estabelecendo um paralelismo de semelhanças e diferenças entre os dois e de avaliar os efeitos de potenciais medidas de eficiência energética e seus efeitos nas classificações de mérito obtidas em cada sistema. Os resultados obtidos na simulação que permitiu avaliar a performance foi muito satisfatório, tendo sido aproveitado pela empresa para efeitos de certificação LEED do edifício em estudo.
Resumo:
[EN] We carry out quasi-classical trajectory caculations for theC + CH+ → C2+ + H reaction on an ad hoc computed high-level ab initio potential energy surface. Thermal rate coefficients at the temperatures of relevance in cold interstellar clouds are derived and compared with the assumed, temperature-independent estimates publicly available in kinetic databases KIDA and UDfA. For a temperature of 10 K the database value overestimates by a factor of two the one obtained by us (thus improperly enhancing the destruction route of CH+ in astrochemical kinetic models) which is seen to double in the temperature range 5–300 K with a sharp increase in the first 50 K. The computed values are fitted via the popular Arrhenius–Kooij formula and best-fitting parameters α = 1:32 X 10-9 cm3s-1, β = 0:10 and γ = 2:19 K to be included in the online mentioned databases are provided. Further investigation shows that the temperature dependence of the thermal rate coefficient better conforms to the recently proposed so-called ‘deformed Arrhenius’ law by Aquilanti and Mundim.
Resumo:
Wydział Chemii
Resumo:
We find approximations to travelling breather solutions of the one-dimensional Fermi-Pasta-Ulam (FPU) lattice. Both bright breather and dark breather solutions are found. We find that the existence of localised (bright) solutions depends upon the coefficients of cubic and quartic terms of the potential energy, generalising an earlier inequality derived by James [CR Acad Sci Paris 332, 581, (2001)]. We use the method of multiple scales to reduce the equations of motion for the lattice to a nonlinear Schr{\"o}dinger equation at leading order and hence construct an asymptotic form for the breather. We show that in the absence of a cubic potential energy term, the lattice supports combined breathing-kink waveforms. The amplitude of breathing-kinks can be arbitrarily small, as opposed to traditional monotone kinks, which have a nonzero minimum amplitude in such systems. We also present numerical simulations of the lattice, verifying the shape and velocity of the travelling waveforms, and confirming the long-lived nature of all such modes.
Resumo:
The thermoset epoxy resin EPON 862, coupled with the DETDA hardening agent, are utilized as the polymer matrix component in many graphite (carbon fiber) composites. Because it is difficult to experimentally characterize the interfacial region, computational molecular modeling is a necessary tool for understanding the influence of the interfacial molecular structure on bulk-level material properties. The purpose of this research is to investigate the many possible variables that may influence the interfacial structure and the effect they will have on the mechanical behavior of the bulk level composite. Molecular models are established for EPON 862-DETDA polymer in the presence of a graphite surface. Material characteristics such as polymer mass-density, residual stresses, and molecular potential energy are investigated near the polymer/fiber interface. Because the exact degree of crosslinking in these thermoset systems is not known, many different crosslink densities (degrees of curing) are investigated. It is determined that a region exists near the carbon fiber surface in which the polymer mass density is different than that of the bulk mass density. These surface effects extend ~10 Å into the polymer from the center of the outermost graphite layer. Early simulations predict polymer residual stress levels to be higher near the graphite surface. It is also seen that the molecular potential energy in polymer atoms decreases with increasing crosslink density. New models are then established in order to investigate the interface between EPON 862-DETDA polymer and graphene nanoplatelets (GNPs) of various atomic thicknesses. Mechanical properties are extracted from the models using Molecular Dynamics techniques. These properties are then implemented into micromechanics software that utilizes the generalized method of cells to create representations of macro-scale composites. Micromechanics models are created representing GNP doped epoxy with varying number of graphene layers and interfacial polymer crosslink densities. The initial micromechanics results for the GNP doped epoxy are then taken to represent the matrix component and are re-run through the micromechanics software with the addition of a carbon fiber to simulate a GNP doped epoxy/carbon fiber composite. Micromechanics results agree well with experimental data, and indicate GNPs of 1 to 2 atomic layers to be highly favorable. The effect of oxygen bonded to the surface of the GNPs is lastly investigated. Molecular Models are created for systems with varying graphene atomic thickness, along with different amounts of oxygen species attached to them. Models are created for graphene containing hydroxyl groups only, epoxide groups only, and a combination of epoxide and hydroxyl groups. Results show models of oxidized graphene to decrease in both tensile and shear modulus. Attaching only epoxide groups gives the best results for mechanical properties, though pristine graphene is still favored.
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA’s Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth’s primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan’s atmosphere, the ISM, and cold celestial bodies.
Resumo:
The interaction of organic chromophores with light initiates ultrafast processes in the timescale of femtoseconds. An atomistic understanding of the mechanism driving such photoinduced reactions opens up the door to exploit them for our benefit. This thesis studies the interactions of ultraviolet light with the DNA/RNA molecules and the amino-acid tryptophan. Using some of the most accurate electronic structure methods and sophisticated environmental modelling, the works documented herein enable quantitative comparisons with cutting-edge experimental data. The relaxation pathways undertaken by the excited molecule are revealed through static and dynamical investigations of the excited-state potential energy surface. The profound role played by the dynamic response of the environment to guide the excitation in these timescales is addressed thoroughly.
Resumo:
The simulation of ultrafast photoinduced processes is a fundamental step towards the understanding of the underlying molecular mechanism and interpretation/prediction of experimental data. Performing a computer simulation of a complex photoinduced process is only possible introducing some approximations but, in order to obtain reliable results, the need to reduce the complexity must balance with the accuracy of the model, which should include all the relevant degrees of freedom and a quantitatively correct description of the electronic states involved in the process. This work presents new computational protocols and strategies for the parameterisation of accurate models for photochemical/photophysical processes based on state-of-the-art multiconfigurational wavefunction-based methods. The required ingredients for a dynamics simulation include potential energy surfaces (PESs) as well as electronic state couplings, which must be mapped across the wide range of geometries visited during the wavepacket/trajectory propagation. The developed procedures allow to obtain solid and extended databases reducing as much as possible the computational cost, thanks to, e.g., specific tuning of the level of theory for different PES regions and/or direct calculation of only the needed components of vectorial quantities (like gradients or nonadiabatic couplings). The presented approaches were applied to three case studies (azobenzene, pyrene, visual rhodopsin), all requiring an accurate parameterisation but for different reasons. The resulting models and simulations allowed to elucidate the mechanism and time scale of the internal conversion, reproducing or even predicting new transient experiments. The general applicability of the developed protocols to systems with different peculiarities and the possibility to parameterise different types of dynamics on an equal footing (classical vs purely quantum) prove that the developed procedures are flexible enough to be tailored for each specific system, and pave the way for exact quantum dynamics with multiple degrees of freedom.