981 resultados para microplastiche, polistirene, pirolisi analitica, GC-MS, tessuti biologici
Resumo:
The essential oils of branches and leaves of Endlicheria citiodora were obtained by hydrodistillation and analysed using GC-FID, GC-MS and both NMR 13C and ¹H, resulting in the identification of methyl geranate as major constituent (93%) in both oils. Cytotoxicity, tyrosinase-inhibition and antioxidant activities were studied and characterized. High antioxidant potential (15.52 and 13.53 µg/mL), low cytotoxicity and tyrosinase inhibition (53.85%) were observed. This is the first paper reporting the biological activities and composition of the essential oils of this species.
Resumo:
Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro microplants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes τ-cadinol and caryophyllene oxide were only produced in microplants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3β-hydroxy-urs-12-en-28-oate were overexpressed only when the microplant was treated with endophytic fungi.
Resumo:
GC/MS/FID analyses of volatile compounds from cladodes and inflorescences from male and female specimens of Baccharis trimera (Less.) DC. collected in the states of Paraná and Santa Catarina, Brazil, showed that carquejyl acetate was the primary volatile component (38% to 73%), while carquejol and ledol were identified in lower concentrations. Data were subjected to hierarchical cluster analysis and principal component analysis, which confirmed that the chemical compositions of all samples were similar. The results presented here highlight the occurrence of the same chemotype of B. trimera in three southern states of Brazil.
Resumo:
A short and efficient synthesis of heptadeuterated 2,2,4,4,5,7,7-d7-cholestane (1) from cholesterol (3) is described. The deuterated material will be useful for the analysis of different sources of petroleum in analytical geochemistry laboratories as internal standard for quantification of steranes via gas chromatography-mass spectrometry (GC-MS).
Resumo:
Croton zehntneri, a plant native to northeastern Brazil, is widely used in folk medicine to treat gastrointestinal problems and has rich essential oil content. The essential oil of C. Zehntneri was analyzed by GC-MS, and its inclusion complex with β-cyclodextrin (β-CD) was characterized by both vibrational spectroscopy and differential scanning calorimetry (DSC). Estragol was the major component identified in the essential oil by the study. IR spectra indicated an interaction of β-CD with essential oil from C. zehntneri, a finding corroborated by the stability constant and scanning calorimetry. Microencapsulation within β-CD has the potential to mask sensory attributes and increase aqueous solubility of oils, thereby improving their applicability as drugs.
Resumo:
This work reports a practical case based on the use of microwave-assisted derivatization and GC-MS for the analysis of glucose. Using two different methods for derivatization, one reference compound and the calculated dipole moment, all the isomers of glucose were identified. Identification was corroborated for the assignment of structures using the mass spectra. With this work, students are expected to associate different types of information to solve the complex problem of the analysis of glucose.
Resumo:
Maceration and supercritical fluid extraction were used to prepare extracts from parts of plants (Holostylis reniformis) collected in two different regions of Brazil. ¹H NMR, HPLC-DAD-ESI/MS, HPLC-DAD, GC-MS, and chemometric techniques were used to analyse lignans in the extracts and showed that yields of SFE-CO2 were less than or equal to those of hexane maceration extracts. These analyses, in conjunction with the concentrations of aliphatic hydrocarbons, fatty acids and their methyl and ethyl derivatives in the extracts, also allowed the chemical composition of parts and provenance of the plant to be differentiated.
Resumo:
The chemical study of the orchid Maxillaria picta resulted in the isolation of the bioactive stilbenes phoyunbene B and phoyunbene C, in addition to four phenolic acids, one xanthone, steroidal compounds and two triterpenes. Crude extract, fractions, subfractions and the isolated xanthone were evaluated for anticancer activity against human tumor cell lines and against evolutionary forms of T. cruzi and L. amazonensis. The structures of the compounds were determined by GC-MS, and ¹H NMR, 13C NMR spectral methods as well as bidimensional techniques.
Resumo:
Tapirira guianensis (Anacardiaceae) is used in traditional medicine and is important for the recovery of degraded areas and riparian forests because the T. guianensis fruits are highly consumed by wildlife. Volatile components from dried leaves and branches of five individual plants of T. guianensis were collected in two sandbank forests of the State of Pará (Extractive Reserve Maracanã and Area of Environmental Protection Algodoal/Maiandeua), extracted by hydrodistillation using a Clevenger-type apparatus, and analyzed by GC/MS. The ten oils obtained are comprised mostly of sesquiterpene hydrocarbons (58.49 to 100%), with (E)-caryophyllene, β-selinene, α-selinene, β-sesquiphellandrene, and α-zingiberene being the most prominent. The results of the oil compositions were processed by Hierarchical Component Analysis (HCA) allowing the establishment of three groups of essential oils for T. guianensis differentiated by the content of β-selinene/α-selinene (Type I), (E)-caryophyllene (Type II), and β-sesquiphellandrene/α-zingiberene (Type III).
Resumo:
The volatile components of the galls induced by the insect Baccharopelma dracunculifoliae (Hemiptera: Psyllidae) on leaves of Baccharis dracunculifolia (Asteraceae) were analyzed by gas chromatography-mass spectrometry (GC-MS) and gas chromatographyflame- ionisation detection (GC-FID), and then comparison with volatile oil samples from healthy leaves collected in the vicinity. The galls produced around 3.5% of the total organic volatiles whereas healthy leaves rendered an average yield of 0.6%. The observed higher proportions of germacrene D, bicyclogermacrene, limonene, and β-pinene in the galls suggest that all these compounds are important targets in the search for natural enemies of this Psyllid. Moreover, higher relative percentages of (E)-nerolidol and spathulenol were found in healthy leaves.
Resumo:
Acacia mearnsii de Wild (black wattle) is one of the most important trees planted in Southern Brazil for tannin extraction and charcoal production. The pyrolysis of the black wattle wood used for obtaining charcoal is performed in brick ovens, with the gas fraction being sent directly into the environment. The present study examines the condensable compounds present in the liquor produced from black wattle wood at different thermal degradation conditions, using gas chromatography coupled with mass spectrometry (GC/MS). Branches of black wattle were thermally degraded at controlled ambient and temperature conditions. Overall, a higher variety of compounds were obtained under atmospheric air pressure than under synthetic air pressure. Most of the tentatively identified compounds, such as carboxylic acids, phenols, aldehydes, and low molecular mass lignin fragments, such as guayacol, syringol, and eugenol, were products of lignin thermoconversion. Substituted aromatic compounds, such as vanillin, ethyl vanillin, and 2-methoxy-4-propeny-phenol, were also identified. At temperatures above 200 ºC, furan, 2-acetylfuran, methyl-2-furoate, and furfural, amongst others, were identified as polysaccharide derivatives from cellulose and hemicellulose depolymerization. This study evidences the need for adequate management of the condensable by-products of charcoal production, both for economic reasons and for controlling their potential environmental impact.
Resumo:
The chemical composition of the essential oil and hydrolates of Campomanesia viatoris Landrum were investigated by gas chromatography/mass spectrometry (GC/MS) and a GC flame ionization detector (GC-FID). The major constituents were tasmanone (70.50, essential oil; 74.73%, hydrolate), flavesone (12.77, essential oil; 12.24%, hydrolate) and agglomerone (6.79, essential oil; 10.84%, hydrolate). Tasmonone was isolated and its structure was characterized by spectrometric analysis, specifically 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS). These findings supports the quimiotaxonomic relationship with Campomanesia and Eucalyptus genera.
Resumo:
Drug trafficking and the introduction of new drugs onto the illicit market are one of the main challenges of the forensic community. In this study, the chemical profile of a new designer drug, 2-(4-iodine-2,5-dimethoxyphenyl)-n-[(2-methoxyphenyl)methyl]etamine or 25I-NBOMe was explored using thin layer chromatography (TLC), ultraviolet-visible spectrophotometry (UV-Vis), attenuated total reflection with Fourier transform infrared spectroscopy(ATR-FTIR), gas chromatography mass spectrometry (GC-MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). First, the TLC technique was effective for identifying spots related to 25C-, 25B- and 25I-NBOMe compounds, all with the same retention factor, Rf ≈ 0.50. No spot was detected for 2,5-dimethoxy-4-bromoamphetamine, 2,5-Dimethoxy-4-chloroamphetamine or lysergic acid diethylamide compounds. ATR-FTIR preserved the physical-chemical properties of the material, whereas GC-MS and ESI-MS showed better analytical selectivity. ESI(+)FT-ICR MS was used to identify the exact mass (m/z428.1706 for the [M + H]+ ion), molecular formula (M = C18H22INO3), degree of unsaturation (DBE = 8) and the chemical structure (from collision induced dissociation, CID, experiments) of the 25I-NBOMe compound. Furthermore, the ATR-FTIR and CID results suggested the presence of isomers, where a second structure is proposed as an isomer of the 25I-NBOMe molecule.
Resumo:
The study was done to identify the most active fungitoxic component of cinnamon bark (Cinnamomum zeylanicum) oil that can be used as a marker for standardization of cinnamon extract or oil based natural preservative of stored seeds. Aspergillus flavus and A. ruber were used as test fungi. The hexane extracted crude oil and the hydro-distilled essential oil from cinnamon bark had complete growth inhibition concentration (CGIC) of 300 and 100 µl/l, respectively. Both oils produced three fractions on preparative thin layer silica-gel chromatography plates. The fraction-2 of either oil was the largest and most active, with CGIC of 200 µl/l, but the fungitoxicity was also retained in the other two fractions. The fraction-1 and 3 of the crude oil reduced growth of both the fungal species by 65%, and those of distilled oil by 45% at 200 µl/l. The CGIC of these fractions from both the sources was above 500 µl/l. The gas chromatography and mass spectrometry (GC-MS) of the fraction-2 of the hexane extract revealed that it contained 61% cinnamaldehyde, 29% cinnamic acid, and two minor unidentified compounds in the proportion of 4% and 6%. The GC-MS of the fraction-2 of the distilled oil revealed that it contained 99.1% cinnamaldehyde and 0.9% of an unidentified compound. The CGIC of synthetic cinnamaldehyde was 300 µl/l and that of cinnamic acid above 500 µl/l. The 1:1 mixture of cinnamaldehyde and cinnamic acid had CGIC of 500 µl/l. The data revealed that cinnamaldehyde was the major fungitoxic component of hexane extract and the distilled essential oil of cinnamon bark, while other components have additive or synergistic effects on total fungitoxicity. It is suggested that the natural seed preservative based on cinnamon oil can be standardized against cinnamaldehyde.