919 resultados para information control
Resumo:
Left inferior frontal gyrus (IFG) is a critical neural substrate for the resolution of proactive interference (PI) in working memory. We hypothesized that left IFG achieves this by controlling the influence of familiarity- versus recollection-based information about memory probes. Consistent with this idea, we observed evidence for an early (200 msec)-peaking signal corresponding to memory probe familiarity and a late (500 msec)-resolving signal corresponding to full accrual of trial-related contextual ("recollection-based") information. Next, we applied brief trains of repetitive transcranial magnetic stimulation (rTMS) time locked to these mnemonic signals, to left IFG and to a control region. Only early rTMS of left IFG produced a modulation of the false alarm rate for high-PI probes. Additionally, the magnitude of this effect was predicted by individual differences in susceptibility to PI. These results suggest that left IFG-based control may bias the influence of familiarity- and recollection-based signals on recognition decisions.
Resumo:
This study investigated whether children’s fears could be un-learned using Rachman’s indirect pathways for learning fear. We hypothesised that positive information and modelling a non-anxious response are effective methods of un-learning fears acquired through verbal information. One hundred and seven children aged 6–8 years received negative information about one animal and no information about another. Fear beliefs and behavioural avoidance were measured. Children were randomised to receive positive verbal information, modelling, or a control task. Fear beliefs and behavioural avoidance were measured again. Positive information and modelling led to lower fear beliefs and behavioural avoidance than the control condition. Positive information was more effective than modelling in reducing fear beliefs and both methods significantly reduced behavioural avoidance. The results support Rachman’s indirect pathways as viable fear un-learning pathways and supports associative learning theories.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
In recent years, there have been increasing concerns over the safety of the Chinese food supply. Although many of these have only raised concern internally within China, several major food safety issues have had international repercussions. In response, China has implemented new food safety laws and management systems to improve its national food safety control system and reduce public and international concerns. This paper has describes and discusses the components of the Chinese system using the five key elements of a national food control system identified by the World Health Organization (WHO) and the Food and Agriculture Organization (FAO) as essential for an effective system. The latest Chinese national food safety control has made significantly improvement on its regulation framework, however, more work need to be done on standards, law enforcement, and information exchange.
Resumo:
Lying to participants offers an experimenter the enticing prospect of making “others' behaviour” a controlled variable, but is eschewed by experimental economists because it may pollute the pool of subjects. This paper proposes and implements a new experimental design, the Conditional Information Lottery, which offers all the benefits of deception without actually deceiving anyone. The design should be suitable for most economics experiments, and works by a modification of an already standard device, the Random Lottery incentive system. The deceptive scenarios of designs which use deceit are replaced with fictitious scenarios, each of which, from a subject's viewpoint, has a chance of being true. The design is implemented in a sequential play public good experiment prompted by Weimann's (1994) result, from a deceptive design, that subjects are more sensitive to freeriding than cooperation on the part of others. The experiment provides similar results to Weimann's, in that subjects are at least as cooperative when uninformed about others' behaviour as they are if reacting to high contributions. No deception is used and the data cohere well both internally and with other public goods experiments. In addition, simultaneous play is found to be more efficient than sequential play, and subjects contribute less at the end of a sequence than at the start. The results suggest pronounced elements of overconfidence, egoism and (biased) reciprocity in behaviour, which may explain decay in contributions in repeated play designs. The experiment shows there is a workable alternative to deception.
Resumo:
Clinical evidence suggests that a persistent search for solutions for chronic pain may bring along costs at the cognitive, affective, and behavioral level. Specifically, attempts to control pain may fuel hypervigilance and prioritize attention towards pain-related information. This hypothesis was investigated in an experiment with 41 healthy volunteers. Prioritization of attention towards a signal for pain was measured using an adaptation of a visual search paradigm in which participants had to search for a target presented in a varying number of colored circles. One of these colors (Conditioned Stimulus) became a signal for pain (Unconditioned Stimulus: electrocutaneous stimulus at tolerance level) using a classical conditioning procedure. Intermixed with the visual search task, participants also performed another task. In the pain-control group, participants were informed that correct and fast responses on trials of this second task would result in an avoidance of the Unconditioned Stimulus. In the comparison group, performance on the second task was not instrumental in controlling pain. Results showed that in the pain-control group, attention was more prioritized towards the Conditioned Stimulus than in the comparison group. The theoretical and clinical implications of these results are discussed.
Resumo:
In the ten years since the first edition of this book appeared there have been significant developments in food process engineering, notably in biotechnology and membrane application. Advances have been made in the use of sensors for process control, and the growth of information technology and on-line computer applications continues apace. In addition, plant investment decisions are increasingly determined by quality assurance considerations and have to incorporate a greater emphasis on health and safety issues. The content of this edition has been rearranged to include descriptions of recent developments and to reflect the influence of new technology on the control and operations of automated plant. Original examples have been retained where relevant and these, together with many new illustrations, provide a comprehensive guide to good practice.
Resumo:
It is often necessary to selectively attend to important information, at the expense of less important information, especially if you know you cannot remember large amounts of information. The present study examined how younger and older adults select valuable information to study, when given unrestricted choices about how to allocate study time. Participants were shown a display of point values ranging from 1–30. Participants could choose which values to study, and the associated word was then shown. Study time, and the choice to restudy words, was under the participant's control during the 2-minute study session. Overall, both age groups selected high value words to study and studied these more than the lower value words. However, older adults allocated a disproportionately greater amount of study time to the higher-value words, and age-differences in recall were reduced or eliminated for the highest value words. In addition, older adults capitalized on recency effects in a strategic manner, by studying high-value items often but also immediately before the test. A multilevel mediation analysis indicated that participants strategically remembered items with higher point value, and older adults showed similar or even stronger strategic process that may help to compensate for poorer memory. These results demonstrate efficient (and different) metacognitive control operations in younger and older adults, which can allow for strategic regulation of study choices and allocation of study time when remembering important information. The findings are interpreted in terms of life span models of agenda-based regulation and discussed in terms of practical applications. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)
Resumo:
A severe complication of spinal cord injury is loss of bladder function (neurogenic bladder), which is characterized by loss of bladder sensation and voluntary control of micturition (urination), and spontaneous hyperreflexive voiding against a closed sphincter (detrusor-sphincter dyssynergia). A sacral anterior root stimulator at low frequency can drive volitional bladder voiding, but surgical rhizotomy of the lumbosacral dorsal roots is needed to prevent spontaneous voiding and dyssynergia. However, rhizotomy is irreversible and eliminates sexual function, and the stimulator gives no information on bladder fullness. We designed a closed-loop neuroprosthetic interface that measures bladder fullness and prevents spontaneous voiding episodes without the need for dorsal rhizotomy in a rat model. To obtain bladder sensory information, we implanted teased dorsal roots (rootlets) within the rat vertebral column into microchannel electrodes, which provided signal amplification and noise suppression. As long as they were attached to the spinal cord, these rootlets survived for up to 3 months and contained axons and blood vessels. Electrophysiological recordings showed that half of the rootlets propagated action potentials, with firing frequency correlated to bladder fullness. When the bladder became full enough to initiate spontaneous voiding, high-frequency/amplitude sensory activity was detected. Voiding was abolished using a high-frequency depolarizing block to the ventral roots. A ventral root stimulator initiated bladder emptying at low frequency and prevented unwanted contraction at high frequency. These data suggest that sensory information from the dorsal root together with a ventral root stimulator could form the basis for a closed-loop bladder neuroprosthetic. Copyright © 2013, American Association for the Advancement of Science
Resumo:
Most of studies on interoperability of systems integration focus on technical and semantic levels, but hardly extend investigations on pragmatic level. Our past work has addressed pragmatic interoperability, which is concerned with the relationship between signs and the potential behaviour and intention of responsible agents. We also define the pragmatic interoperability as a level concerning with the aggregation and optimisation of various business processes for achieving intended purposes of different information systems. This paper, as the extension of our previous research, is to propose an assessment method for measuring pragmatic interoperability of information systems. We firstly propose interoperability analysis framework, which is based on the concept of semiosis. We then develop pragmatic interoperability assessment process from two dimensions including six aspects (informal, formal, technical, substantive, communication, and control). We finally illustrate the assessment process in an example.
Resumo:
Low-power medium access control (MAC) protocols used for communication of energy constraint wireless embedded devices do not cope well with situations where transmission channels are highly erroneous. Existing MAC protocols discard corrupted messages which lead to costly retransmissions. To improve transmission performance, it is possible to include an error correction scheme and transmit/receive diversity. It is possible to add redundant information to transmitted packets in order to recover data from corrupted packets. It is also possible to make use of transmit/receive diversity via multiple antennas to improve error resiliency of transmissions. Both schemes may be used in conjunction to further improve the performance. In this study, the authors show how an error correction scheme and transmit/receive diversity can be integrated in low-power MAC protocols. Furthermore, the authors investigate the achievable performance gains of both methods. This is important as both methods have associated costs (processing requirements; additional antennas and power) and for a given communication situation it must be decided which methods should be employed. The authors’ results show that, in many practical situations, error control coding outperforms transmission diversity; however, if very high reliability is required, it is useful to employ both schemes together.
Resumo:
Near ground maneuvers, such as hover, approach and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground often using ultrasonic or laser range finders. Near ground maneuvers are naturally mastered by flying birds and insects as objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-to-contact (Tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for Unmanned Aerial Vehicles (UAV) relative ground distance control. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the Tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented on-board an experimental quadrotor UAV and shown not only to successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.
Resumo:
In an adaptive seamless phase II/III clinical trial interim analysis, data are used for treatment selection, enabling resources to be focused on comparison of more effective treatment(s) with a control. In this paper, we compare two methods recently proposed to enable use of short-term endpoint data for decision-making at the interim analysis. The comparison focuses on the power and the probability of correctly identifying the most promising treatment. We show that the choice of method depends on how well short-term data predict the best treatment, which may be measured by the correlation between treatment effects on short- and long-term endpoints.