999 resultados para extrusion pressure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vapor pressure of pure liquid indium, and the sum of pressures of (In) and (In2O) species over the condensed phase mixture {In} + , contained in a silica vessel, have been measured by Knudsen effusion and Langmuir free vaporization methods in the temperatue range 600 to 950°C. Mass spectrometric studies reported in the literature show that (In) and (In2O) are the important species in the vapor phase over the {In} + ; mixture. The vapor pressure of (In2O) corresponding to the reaction, deduced from the present measurements is given by the equation, The “apparent evaporation coefficient” for the condensed phase mixture is approximately 0.8. The energy for the dissociation (In2O) molecule into atoms calculated from the above equation is D°0 = 180.0 (± 1.0) kcal mol−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vapor pressure of pure indium, and the sum of the pressures of (In) and (In2O) species over the condensed phase mixture {In} + 〈MgIn2O4〉 + 〈MgO〉, have been measured by the Knudsen effusion technique in the temperature range 1095–1350 K. The materials under study were contained in a zirconia crucible, which had a Knudsen orifice along the vertical wall. The major vapor species over the condensed phase mixture were identified as (In) and (In2O) using a mass-spectrometer. The vapor pressure of (In2O) corresponding to the reaction,View the MathML source was deduced from the experimental results;View the MathML source The standard free energy of formation of the inverse spinel 〈MgIn2O4〉 from its component oxides, is given by,View the MathML source View the MathML source The entropy of transformation of 〈In2O3〉 from the C rare-earth structure to the corundum structure is evaluated from the measured entropy of formation of (MgIn2O4) and a semi-empirical correlation for the entropy of formation of spinel phases from component oxides with rock-salt and corundum structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gibbs-Bogoliubov formalism in conjunction with the pseudopotential theory is applied to the calculation of the vapour pressure of eight liquid metals from Groups I to IV of the periodic table and of alloys (Na-K). The calculated vapour pressure of the elements and their temperature dependencies, the partial pressures, activities and boiling points of the alloys are all found to be in reasonable agreement with measured data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and electrical properties of Eu2O3 films grown on Si(100) in 500–600 °C temperature range by low pressure metalorganic chemical vapor deposition are reported. As-grown films also possess the impurity Eu1−xO phase, which has been removed upon annealing in O2 ambient. Film’s morphology comprises uniform spherical mounds (40–60 nm). Electrical properties of the films, as examined by capacitance-voltage measurements, exhibit fixed oxide charges in the range of −1.5×1011 to −6.0×1010 cm−2 and dielectric constant in the range of 8–23. Annealing has resulted in drastic improvement of their electrical properties. Effect of oxygen nonstoichiometry on the film’s property is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomistic simulation of initial < 100 > oriented FCC Cu nanowires shows a novel coupled temperature-pressure dependent reorientation from < 100 > to < 110 > phase. A temperature-pressure-induced solid-solid < 100 > to < 110 > reorientation diagram is generated for Cu nanowire with varying cross-sectional sizes. A critical pressure is reported for Cu nanowires with varying cross-sectional sizes, above which an initial < 100 > oriented nanowire shows temperature independent reorientation into the < 110 > phase. The effect of surface stresses on the < 100 > to < 110 > reorientation is also studied. The results indicate that above a critical cross-sectional size for a given temperature-pressure, < 100 > to < 110 > reorientation is not possible. It is also reported here that for a given applied pressure, an increase in temperature is required for the < 100 > to < 110 > reorientation with increasing cross-sectional size of the nanowire. The temperature-pressure-induced solid-solid < 100 > to < 110 > reorientation diagram reported in the present paper could further be used as guidelines for controlling the reorientations/shape memory in nano-scale applications of FCC metallic nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable bench mark experimental database in the separated hypersonic flow regime is necessary to validate high resolution CFD codes. In this paper we report the surface pressure and heat transfer measurements carried out on double cones (first cone semi-apex angle = 15, 25 deg.; second cone semi-apex angle= 35, 68 deg.) at hypersonic speeds that will be useful for CFD code validation studies. The surface pressure measurements are carried out at nominal Mach number of 8.35 in the IISc hypersonic wind tunnel. On the other hand the surface heat transfer measurements are carried out at a nominal Mach number of 5.75 in the IISc hypersonic shock tunnel. The flow separation point on the first cone, flow reattachment on the second cone and the wild fluctuation of the transmitted shock on the second cone surface (25/68 deg. double cone) in the presence of severe adverse pressure gradient are some of the flow features captured in the measurements. The results from the CFD studies indicate good agreement with experiments in the attached flow regime while considerable differences are noticeable in the separated flow regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a comparative study of thin films of Er2O3 and Gd2O3 grown on n-type Si(100) by low-pressure metalorganic chemical vapour deposition (MOCVD) under the identical conditions has been presented. beta-Diketonate complex of rate earth metals was used as precursor. Description on the evolution of the morphology, structure, optical, and electrical characteristics of films with respect to growth parameters and post-deposition annealing process has been presented. As-gown Gd2O3 films grow with <111> texture, whereas the texture of Er2O3 films strongly depends on the growth temperature (either <100> or <111>). Compositional analysis reveals that the Gd2O3 films grown at or above 500degreesC are carbon free whereas Er2O3 films at upto 525degreesC show the presence of heteroatoms and Er2O3 films grown above 525degreesC are carbon five. The effective dielectric constant is in the range of 7-24, while the fixed charge density is in the range - 10(11) to 10(10) CM-2 as extracted from the C-V characteristics. DC I-V study was carried out to examine the leakage behaviour of films. It reveals that the as-grown Gd2O3 film was very leakey in nature. Annealing of the films in oxidizing ambient for a period of 20 min results in a drastic improvement in the leakage behaviour. The presence of heteroatoms (such as carbon) and their effect on the properties of films are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents data on the impact of biotic pressure in terms of grazing by livestock and wood cutting by humans on the plant community in the Nilgiri Biosphere Reserve of India. Grass, and herbaceous plant biomass, number of cattle dung piles, number of woody stems available and damaged by human activities and weed biomass were assessed at different proximity along transects radiating from village-forest boundary to forest interior to measure the ecological impact of livestock grazing and fire wood collection. The grass biomass was positively correlated to overgrazing indicating the adverse effect on natural vegetation by cattle. Woodcutting was intense along the forest boundary and significantly declined as distance increased. Similarly, weed biomass and number of thorny species declined positively with proximity from village-forest boundary and the weed biomass was significantly higher in the pastoral sites compared to residential sites. The results suggest that human impact adversely affects natural vegetation and promotes weed proliferation in forest areas adjoining human settlements in the ecologically important Nilgiri Biosphere Reserve. Continued anthropogenic pressure could cause reduction in fodder availability to large herbivores like elephants, which in turn leads to an increase in human-elephant conflict. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high pressure Raman studies on single crystals of metallic LaB6 upto a pressure of 16.$ GPa. Raman spectra shows three lines at 680 cm(-1) (T-2g), 1120 cm(-1) (E-g) and 1258 cm(-1) (A(1g)), associated with the internal modes of B-6 molecule. The T-2g mode shows an asymmetric Fano line shape, arising from the interference between the phonon line and the electronic continuum. The line is fitted with I(omega) = I-0(q + epsilon(2))/(I + epsilon(2)) where epsilon = (omega - omega(0))/Gamma, omega(0) is the phonon frequency renormalised due to electron-phonon self energy corrections, Tis the width parameter proportional to the square of the matrix element of the electron-phonon interaction potential. The parameter a signifies the strength of interference. Most interestingly our pressure data for the T-2g mode shows a significant change in the slope of the mode frequency with pressure d omega(0)/dP and Gamma at 9.5 GPa. This clearly indicates that LaB6 undergoes a subtle phase transition at 9.5 GPa within the metallic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report Raman signatures of electronic topological transition (ETT) at 3.6 GPa and rhombohedral (alpha-Bi2Te3) to monoclinic (beta-Bi2Te3) structural transition at similar to 8 GPa. At the onset of ETT, a new Raman mode appears near 107 cm(-1) which is dispersionless with pressure. The structural transition at similar to 8 GPa is marked by a change in pressure derivative of A(1g) and E-g mode frequencies as well as by appearance of new modes near 115 cm(-1) and 135 cm(-1). The mode Grilneisen parameters are determined in both the alpha and beta-phases. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-pressure spray characteristics of biofuels, specifically, Pongamia oil and its blends with diesel are studied for various gas pressures. Two single-hole solenoid injectors with nozzle diameters of 200 and 260 mu m are used along with a high-pressure common-rail direct-injection system to inject fuel into a high-pressure spray visualization chamber. The spray structure is characterized using a high-speed laser-based shadowgraphy technique. The spray structure of Pongamia oil revealed the presence of an intact liquid core at low gas pressure. At high gas pressures, the spray atomization of the Pongamia oil showed marked improvement. The spray tip penetration of Pongamia oil and its blends with diesel is higher compared to that of diesel for all test conditions. The spray cone angle of Pongamia oil and 50% Pongamia oil blend with diesel is lower as compared to that of diesel. Both these observations are attributed to the presence of large droplets carrying higher momentum in oil and blend. The droplet size is measured at an injection pressure of 1000 bar and gas pressure of 30 bar at 25 mm below the nozzle tip using the particle/droplet image.analysis (PDIA) method. The droplet size measurements have shown that the Sauter mean diameter (SMD) in the spray core of Pongamia oil is more than twice that of diesel. The spray tip penetration of the 20% blend of Pongamia with diesel (P20) is similar to that of diesel but the SMD is 50% higher. Based on experimental data, appropriate spray tip penetration correlation is proposed for the vegetable oil fuels such as Pongamia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the oxide ceramics have widely been investigated for their biocompatibility, non-oxide ceramics, such as SiAlON and SiC are yet to be explored in detail. Lack of understanding of the biocompatibility restricts the use of these ceramics in clinical trials. It is hence, essential to carry out proper and thorough study to assess cell adhesion, cytocompatibility and cell viability on the non-oxide ceramics for the potential applications. In this perspective, the present research work reports the cytocompatibility of gas pressure sintered SiAlON monolith and SiAlON-SiC composites with varying amount of SIC, using connective tissue cells (L929) and bone cells (Saos-2). The quantification of cell viability using MTT assay reveals the non-cytotoxic response. The cell viability has been found to be cell type dependent. An attempt has been made to discuss the cytocompatibility of the developed composites in the light of SiC content and type of sinter additives. (C) 2011 Elsevier B.V. All rights reserved.