968 resultados para electron-beam lithography
Resumo:
HfO2 Elms are deposited on BK7 glass substrates by electron beam evaporation. The influences of annealing between 100 degrees C and 400 degrees C on residual stresses and structures of HfO2 films are studied. It is found that little differences of spectra, residual stresses and structures are obtained after annealing at lower temperatures. After annealing at higher temperatures, the spectra shift to short wavelength, the residual stress increases with the increasing annealing temperature. At the same time, the crystallite size increases and interplanar distance decreases. The variations of optical spectra and residual stress correspond to the evolutions of structures induced by annealing.
Resumo:
TiO2 thin films are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for 4h, the spectra and XRD patterns of the TiO2 thin film are obtained. Weak absorption of coatings is measured by the surface thermal lensing technique, and laser-induced damage threshold (LIDT) is determined. It is found that with the increasing annealing temperature, the transmittance of TiO2 films decreases. Especially when coatings are annealed at high temperature over 1173K, the optical loss is very serious. Weak absorption detection indicates that the absorption of coatings decreases firstly and then increases, and the absorption and defects play major roles in the LIDT of TiO2 thin films.
Resumo:
TiO2 films deposited by electron beam evaporation with glancing angle deposition (GLAD) technique were reported. The influence of flux angle on the surface morphology and the microstructure was investigated by scanning electron microscopy. The GLAD TiO2 films are anisotropy with highly orientated nanostructure of the slanted columns. With the increase of flux angle, refractive index and packing density decrease. This is caused by the shadowing effect dominating film growth. The anisotropic structure of TiO2 films results in optical birefringence, which reaches its maximum at the flux angle alpha = 65 degrees. The maximum birefringence of GLAD TiO2 films is higher than that of common bulk materials. It is suggested that glancing angle deposition may offer an effective method to obtain tailorable refractive index and birefringence in a large continuous range. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
TiO2 films are deposited by electron beam evaporation as a function of oxygen partial pressure. The packing density, refractive index, and extinction coefficient all decrease with the increase of pressure, which also induces the change of the film's microstructure, such as the increase of voids and H2O concentration in the film. The laser-induced damage threshold (LIDT) of the film increases monotonically with the rise of pressure in this experiment. The porous structure and low nonstoichiometric defects absorption contribute to the film's high LIDT. The films prepared at the lowest and the highest pressure show nonstoichiometric and surface-defects-induced damage features, respectively.(C) 2007 American Institute of Physics.
Resumo:
HfO2 single layers, 800 run high-reflective (HR) coating, and 1064 ran HR coating were prepared by electron-beam evaporation. The laser-induced damage thresholds (LIDTs) and damage morphologies of these samples were investigated with single-pulse femtosecond and nanosecond lasers. It is found that the LIDT of the HfO2 single layer is higher than the HfO2-SiO2 HR coating in the femtosecond regime, while the situation is opposite in the nanosecond regime. Different damage mechanisms are applied to study this phenomenon. Damage morphologies of all samples due to different laser irradiations are displayed. (c) 2007 Optical Society of America.
Resumo:
Single layers and antireflection films were deposited by electron beam evaporation, ion assisted deposition and interrupted ion assisted deposition, respectively. Antireflection film of quite high laser damage threshold (18J/cm(2)) deposited by interrupted ion assisted deposition were got. The electric field distribution, weak absorption, and residual stress of films and their relations to damage threshold were investigated. It was shown that the laser induced damage threshold of film was the result of competition of disadvantages and advantages, and interrupted ion assisted deposition was one of the valuable methods for preparing high laser induced damage threshold films. (c) 2007 Optical Society of America
Resumo:
Two kinds of HfO2/SiO2 800 nm high-reflective (HR) coatings, with and without SiO2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO2 protective layer for HfO2/SiO2 HR coating with SiO2 protective layer. The relation of LIDT for two kinds of HfO2/SiO2 HR coatings in calculation agrees with the experiment result. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Thin films of ZrO2, HfO2 and TiO2 were deposited on kinds of substrates by electron beam evaporation (EB), ion assisted deposition (IAD) and dual ion beam sputtering (DIBS). Then some of them were annealed at different temperatures. X-ray diffraction (XRD) was applied to determine the crystalline phase and the grain size of these films, and the results revealed that their microstructures strongly depended on the deposition conditions such as substrate, deposition temperature, deposition method and annealing temperature. Theory of crystal growth and migratory diffusion were applied to explain the difference of crystalline structures between these thin films deposited and treated under various conditions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
ZrO2 films were prepared by electron beam evaporation with glancing angle deposition (GLAD) technique. The as-deposition and annealed ZrO2 films are all amorphous, different from that deposited at normal incidence. Due to the shadowing effect, a highly orientated structure composed of slanted columns formed, and the obtained films became the mixture of slanted columns and voids. The relationship among the effective refractive index, packing density and flux incident angle was investigated. The refractive index and packing density of ZrO2 films decrease with the increase of the incident angle. The in-plane birefringence of GLAD ZrO2 films was calculated. At the packing density of 0.576, the maximum birefringence is 0.037. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
分析了倾斜入射条件下导致光学薄膜产生偏振的原因, 针对不同偏振态的等效导纳与等效相位进行了分析, 并计算了对称膜层在45°入射条件下不同偏振态的等效折射率与等效相位厚度, 采用等效层方法设计了光学性能良好的600~900 nm波段消偏振宽带减反膜。最后利用电子束蒸发技术制备了薄膜样品, 样品的光谱性能完全能够满足使用要求。其中在600~900 nm波段范围内, 平均反射率均小于1.38%, 反射率的偏振度均低于0.89%。另外, 通过对其理论及实验光学性能、角度敏感性、膜层厚度误差敏感性等方面的分析结果可
Resumo:
采用电子束蒸发方式制备了两种不同材料组合的分光膜,分别对其在波长1064 nm激光辐照下的损伤阈值进行了测试,用Alpha-Step 500台阶仪对破斑进行了深度测量。实验结果表明,破斑呈现出表面层的剥落和深坑破坏两种形态。表面层的剥落深度在一定范围内不随能量密度的变化而变化;深坑破坏深浅不一,是膜内缺陷融化、汽化及喷发的综合作用的结果,是损伤阈值降低的主要原因。
Resumo:
Design and preparation of frequency doubling antireflection coating with different thicknesses of interlayer were investigated for LiB3O5 (LBO) substrate. The design was based on the vector method. The thickness of the inserted SiO2 interlayer could be changed in a wide range for the four-layer design with two zeros at 1064 and 532 nm. The coatings without any interlayer and with 0.1 quarter-wave (λ/4), 0.3 λ/4, 0.5 λ/4 SiO2 interlayer were deposited respectively on LBO by using electron beam evaporation technique. All the prepared coatings with SiO2 interlayer indicated satisfying optical behavior. This expanded our option for the thickness of an interlayer when coating on LBO substrate. The prepared films with SiO2 interlayer showed better adhesion than that without any interlayer. The thickness of the interlayer affected the adhesion, the adhesion for the coating with 0.5 λ/4 SiO2 interlayer was not as good as the other two.}
Resumo:
用电子束蒸发法制备出四种不同Y2O3含量的Y2O3稳定ZrO2(YSZ)薄膜,用X射线衍射和透射光谱测定薄膜的结构和光学性能.结果表明:随着Y2O3含量的增加,ZrO2薄膜从单斜相向高温相(四方相和立方相)转变,获得了结构稳定的YSZ薄膜;YSZ薄膜的晶粒尺寸都比ZrO2薄膜的大,但随着Y2O3加入量的增加,晶粒尺寸有减小的趋势,薄膜表面也趋向光滑平整.所有YSZ薄膜的透射谱线都与ZrO2薄膜相似,在可见光和红外光区都有较高的透过率.Y2O3的加入还可以改变薄膜的折射率,在一定范围内可得到所需的任意折射率
Resumo:
利用电子束蒸发和光电极值监控技术制备了氧化铪薄膜,并分别用两种后处理方法(空气中退火和氧等离子体轰击)对样品进行了处理.然后,对样品的透过率、吸收和抗激光损伤阈值进行了测试分析.实验结果表明,两种后处理方法都能不同程度地降低了氧化铪薄膜的吸收损耗、提高了抗激光损伤阈值.实验结果还表明,氧等离子体轰击的后处理效果明显优于热退火,样品的吸收平均值在氧等离子体后处理前后分别为34.8ppm和9.0ppm,而基频(1 064nm)激光损伤阈值分别为10.0J/cm^2和21.4J/cm^2.
Resumo:
用电子束蒸发沉积方法在X切LBO(X-LBO)晶体上镀制了两种不同膜系结构的1064和532nm倍频增透膜,其中一种膜系结构为基底/ZrO2/Y2O3/A12O3/SiO2/空气,另一种为基底/0.5Al2O3/ZrO2/Y2O3/A12O3/SiO2/空气,两种膜系结构的主要差别在于有无氧化铝过渡层。测量了薄膜的反射率光谱曲线,发现两种增透膜在1064和532nm处的反射率均小于0.5%,实际镀制结果与理论设计曲线的差异主要是由材料折射率的变化引起的。且对样品在空气环境中进行了温度为473K的退火处理,