937 resultados para communication design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 1: Introduction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking.

In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy efficiency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s.

Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW.

Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be –64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado para obtenção do grau de Mestre em Design de Comunicação, apresentada na Universidade de Lisboa - Faculdade de Arquitectura

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado para obtenção do grau de Mestre em Design de Produto, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical waveguides have shown promising results for use within printed circuit boards. These optical waveguides have higher bandwidth than traditional copper transmission systems and are immune to electromagnetic interference. Design parameters for these optical waveguides are needed to ensure an optimal link budget. Modeling and simulation methods are used to determine the optimal design parameters needed in designing the waveguides. As a result, optical structures necessary for incorporating optical waveguides into printed circuit boards are designed and optimized. Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit boards. This material was chosen because it has low absorption, high temperature stability, and can be deposited using common processing techniques. Two sizes of waveguides are investigated, 50 $unit{mu m}$ multimode and 4 - 9 $unit{mu m}$ single mode waveguides. A beam propagation method is developed for simulating the multimode and single mode waveguide parameters. The attenuation of simulated multimode waveguides are able to match the attenuation of fabricated waveguides with a root mean square error of 0.192 dB. Using the same process as the multimode waveguides, parameters needed to ensure a low link loss are found for single mode waveguides including maximum size, minimum cladding thickness, minimum waveguide separation, and minimum bend radius. To couple light out-of-plane to a transmitter or receiver, a structure such as a vertical interconnect assembly (VIA) is required. For multimode waveguides the optimal placement of a total internal reflection mirror can be found without prior knowledge of the waveguide length. The optimal placement is found to be either 60 µm or 150 µm away from the end of the waveguide depending on which metric a designer wants to optimize the average output power, the output power variance, or the maximum possible power loss. For single mode waveguides a volume grating coupler is designed to couple light from a silicon waveguide to a polymer single mode waveguide. A focusing grating coupler is compared to a perpendicular grating coupler that is focused by a micro-molded lens. The focusing grating coupler had an optical loss of over -14 dB, while the grating coupler with a lens had an optical loss of -6.26 dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates how textbook design may influence students’ visual attention to graphics, photos and text in current geography textbooks. Eye tracking, a visual method of data collection and analysis, was utilised to precisely monitor students’ eye movements while observing geography textbook spreads. In an exploratory study utilising random sampling, the eye movements of 20 students (secondary school students 15–17 years of age and university students 20–24 years of age) were recorded. The research entities were double-page spreads of current German geography textbooks covering an identical topic, taken from five separate textbooks. A two-stage test was developed. Each participant was given the task of first looking at the entire textbook spread to determine what was being explained on the pages. In the second stage, participants solved one of the tasks from the exercise section. Overall, each participant studied five different textbook spreads and completed five set tasks. After the eye tracking study, each participant completed a questionnaire. The results may verify textbook design as one crucial factor for successful knowledge acquisition from textbooks. Based on the eye tracking documentation, learning-related challenges posed by images and complex image-text structures in textbooks are elucidated and related to educational psychology insights and findings from visual communication and textbook analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A estética é algo que interfere no bem-estar das pessoas e o sorriso não é excepção, sendo até considerado um factor estético essencial nos dias de hoje, perante uma sociedade cada vez mais exigente relativamente aos padrões de beleza. A área da estética dentária, encontra-se em constantes mudanças devido à evolução da qualidade dos materiais e das técnicas utilizadas, levando a melhorias na reprodução das características naturais dos dentes. O médico dentista tem a responsabilidade de adquirir conhecimento e habilidades profissionais para a elaboração de tratamentos estéticos dentários que satisfaçam as expectativas dos pacientes quanto ao seu sorriso. Actualmente, o médico dentista possui várias opções para planear os tratamentos, entre as quais, o planeamento digital através do Digital Smile Design. O Digital Smile Design (DSD), criado pelo Doutor Christian Coachman, veio responder à procura elevada por tratamentos cada vez mais personalizados por parte dos pacientes. O DSD amplia a visão relativamente aos diagnósticos, melhora a comunicação entre as diferentes especialidades na área da medicina dentária e cria planos previsíveis durante o tratamento dentário. Trata-se de um programma onde são trabalhadas imagens fotográficas do paciente para a elaboração de um tratamento estético que responda as necessidades biológicas, funcionais e emocionais do paciente. Este poderá acompanhar e visualizar todos os passos do tratamento e deste modo, torna-se parte integrante do processo. O paciente expressa a sua opinião e as suas expectativas quanto ao resultado final. Neste trabalho realizou-se uma revisão narrativa da literatura sobre a técnica Digital Smile Design utilizando as palavras-chaves: Digital Smile Design; Visagism; dental planning; meaning of smile; mock-up. Os objetivos deste trabalho foi o de conhecer a técnica Digital Smile Design, os princípios do visagismo e a importância do planeamento nestes contextos. O sucesso de um tratamento está dependente de um correcto planeamento e de uma execução clínica e laboratorial cuidadosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Literature emphasises the sparse research focused in collaborative and open approaches in the design conceptualisation stage, also known as the Fuzzy Front-End (FFE). Presently, the most challenging discussion arising from this specific field of research lies in understanding on whether or not to structure the referred conceptual stage. Accordingly, the established hypothesis behind this study sustains that a structured approach in the FFE would benefit the interdisciplinary dialogue. Therefore, two objectives support this study: to understand the benefits of an interdisciplinary approach in the FFE, and to test one proposed model for this conceptual stage. By means of a small-scale design experiment, this paper pretends to give additional contributions to this area of research, in the context of new product development (NPD). The general research supporting this specific study aims to conceptualise in the area of newly and futuristic aircraft configurations. Hence, this same topic based the conceptualisation process in the conducted ideation sessions, which are conducted by five different teams of three elements each. The results of the different ideation sessions reinforce the contemporary paradigm of Open Innovation (OI), which is based in trust and communication to better collaborate. The postulated hypothesis for this study is partially validated as teams testing the proposed and structured model generally consider that its usage would benefit the integration of different disciplines. Besides, a general feeling that a structured approach integrates different perspectives and gives creativity a focus pervades. Nevertheless, the small-scale of the design experiment attributes some limitations to this study, despite giving new insights in how to better organise coming and more sustained studies. Interestingly, the importance of sketching as an interdisciplinary means of communication is underlined with the obtained results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network monitoring is of paramount importance for effective network management: it allows to constantly observe the network’s behavior to ensure it is working as intended and can trigger both automated and manual remediation procedures in case of failures and anomalies. The concept of SDN decouples the control logic from legacy network infrastructure to perform centralized control on multiple switches in the network, and in this context, the responsibility of switches is only to forward packets according to the flow control instructions provided by controller. However, as current SDN switches only expose simple per-port and per-flow counters, the controller has to do almost all the processing to determine the network state, which causes significant communication overhead and excessive latency for monitoring purposes. The absence of programmability in the data plane of SDN prompted the advent of programmable switches, which allow developers to customize the data-plane pipeline and implement novel programs operating directly in the switches. This means that we can offload certain monitoring tasks to programmable data planes, to perform fine-grained monitoring even at very high packet processing speeds. Given the central importance of network monitoring exploiting programmable data planes, the goal of this thesis is to enable a wide range of monitoring tasks in programmable switches, with a specific focus on the ones equipped with programmable ASICs. Indeed, most network monitoring solutions available in literature do not take computational and memory constraints of programmable switches into due account, preventing, de facto, their successful implementation in commodity switches. This claims that network monitoring tasks can be executed in programmable switches. Our evaluations show that the contributions in this thesis could be used by network administrators as well as network security engineers, to better understand the network status depending on different monitoring metrics, and thus prevent network infrastructure and service outages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents an improvement of the long range battery-less UHF RFID platform for sensor applications which is based on the open source Wireless Identification and Sensing Platform (WISP) project. The purpose of this work is to design a digital logic that performs the RFID EPC gen2 protocol communication, is able to acquire information by sensors and provide an accurate estimation of tag location ensuring low energy consumption. This thesis will describe the hardware architecture on which the digital logic was inserted, the Verilog code developed, the methods by which the digital logic was tested and an explorative study of chip synthesis on Cadence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As future technologies are going to be autonomous under the umbrella of the Internet of things (IoT) we can expect WPT to be the solution for intelligent devices. WPT has many industrial and medical applications both in the near-field and far-field domains. Considering the impact of WPT, this thesis is an attempt to design and realize both near-field and far-field WPT solutions for different application scenarios. A 27 MHz high frequency inductive wireless power link has been designed together with the Class-E switching inverter to compensate for the efficiency loss because of the varying weak coupling between transmitter and receiver because of their mutual misalignment. Then a system of three coils was introduced for SWIPT. The outer coil for WPT and the inner two coils were designed to fulfil the purpose of communication and testing, operating at frequencies different from the WPT coil. In addition to that, a trapping filter technique has also been adopted to ensure the EM isolation of the coils. Moreover, a split ring resonator-based dual polarization converter has been designed with good efficiency over a wide frequency range. The gap or cuts have been introduced in the adjacent sides of the square ring to make it a dual-polarization converter. The converter is also stable over a wide range of incident angles. Furthermore, a meta-element based intelligent surface has been designed to work in the reflection mode at 5 GHz. In this research activity, interdigital capacitors (IDCs) instead of ICs are introduced and a thin layer of the HfZrO between substrate and meta elements is placed whose response can be tuned and controlled with the applied voltage to achieve IRS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multi-faced evolution of network technologies ranges from big data centers to specialized network infrastructures and protocols for mission-critical operations. For instance, technologies such as Software Defined Networking (SDN) revolutionized the world of static configuration of the network - i.e., by removing the distributed and proprietary configuration of the switched networks - centralizing the control plane. While this disruptive approach is interesting from different points of view, it can introduce new unforeseen vulnerabilities classes. One topic of particular interest in the last years is industrial network security, an interest which started to rise in 2016 with the introduction of the Industry 4.0 (I4.0) movement. Networks that were basically isolated by design are now connected to the internet to collect, archive, and analyze data. While this approach got a lot of momentum due to the predictive maintenance capabilities, these network technologies can be exploited in various ways from a cybersecurity perspective. Some of these technologies lack security measures and can introduce new families of vulnerabilities. On the other side, these networks can be used to enable accurate monitoring, formal verification, or defenses that were not practical before. This thesis explores these two fields: by introducing monitoring, protections, and detection mechanisms where the new network technologies make it feasible; and by demonstrating attacks on practical scenarios related to emerging network infrastructures not protected sufficiently. The goal of this thesis is to highlight this lack of protection in terms of attacks on and possible defenses enabled by emerging technologies. We will pursue this goal by analyzing the aforementioned technologies and by presenting three years of contribution to this field. In conclusion, we will recapitulate the research questions and give answers to them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet of Things (IoT) has grown rapidly in recent years, leading to an increased need for efficient and secure communication between connected devices. Wireless Sensor Networks (WSNs) are composed of small, low-power devices that are capable of sensing and exchanging data, and are often used in IoT applications. In addition, Mesh WSNs involve intermediate nodes forwarding data to ensure more robust communication. The integration of Unmanned Aerial Vehicles (UAVs) in Mesh WSNs has emerged as a promising solution for increasing the effectiveness of data collection, as UAVs can act as mobile relays, providing extended communication range and reducing energy consumption. However, the integration of UAVs and Mesh WSNs still poses new challenges, such as the design of efficient control and communication strategies. This thesis explores the networking capabilities of WSNs and investigates how the integration of UAVs can enhance their performance. The research focuses on three main objectives: (1) Ground Wireless Mesh Sensor Networks, (2) Aerial Wireless Mesh Sensor Networks, and (3) Ground/Aerial WMSN integration. For the first objective, we investigate the use of the Bluetooth Mesh standard for IoT monitoring in different environments. The second objective focuses on deploying aerial nodes to maximize data collection effectiveness and QoS of UAV-to-UAV links while maintaining the aerial mesh connectivity. The third objective investigates hybrid WMSN scenarios with air-to-ground communication links. One of the main contribution of the thesis consists in the design and implementation of a software framework called "Uhura", which enables the creation of Hybrid Wireless Mesh Sensor Networks and abstracts and handles multiple M2M communication stacks on both ground and aerial links. The operations of Uhura have been validated through simulations and small-scale testbeds involving ground and aerial devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of distributed and ubiquitous intelligence has emerged over the last years as the mainspring of transformative advancements in mobile radio networks. As we approach the era of “mobile for intelligence”, next-generation wireless networks are poised to undergo significant and profound changes. Notably, the overarching challenge that lies ahead is the development and implementation of integrated communication and learning mechanisms that will enable the realization of autonomous mobile radio networks. The ultimate pursuit of eliminating human-in-the-loop constitutes an ambitious challenge, necessitating a meticulous delineation of the fundamental characteristics that artificial intelligence (AI) should possess to effectively achieve this objective. This challenge represents a paradigm shift in the design, deployment, and operation of wireless networks, where conventional, static configurations give way to dynamic, adaptive, and AI-native systems capable of self-optimization, self-sustainment, and learning. This thesis aims to provide a comprehensive exploration of the fundamental principles and practical approaches required to create autonomous mobile radio networks that seamlessly integrate communication and learning components. The first chapter of this thesis introduces the notion of Predictive Quality of Service (PQoS) and adaptive optimization and expands upon the challenge to achieve adaptable, reliable, and robust network performance in dynamic and ever-changing environments. The subsequent chapter delves into the revolutionary role of generative AI in shaping next-generation autonomous networks. This chapter emphasizes achieving trustworthy uncertainty-aware generation processes with the use of approximate Bayesian methods and aims to show how generative AI can improve generalization while reducing data communication costs. Finally, the thesis embarks on the topic of distributed learning over wireless networks. Distributed learning and its declinations, including multi-agent reinforcement learning systems and federated learning, have the potential to meet the scalability demands of modern data-driven applications, enabling efficient and collaborative model training across dynamic scenarios while ensuring data privacy and reducing communication overhead.