918 resultados para channel deepening baywide monitoring programs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis discusses various aspects of the integrity monitoring of GPS applied to civil aircraft navigation in different phases of flight. These flight phases include en route, terminal, non-precision approach and precision approach. The thesis includes four major topics: probability problem of GPS navigation service, risk analysis of aircraft precision approach and landing, theoretical analysis of Receiver Autonomous Integrity Monitoring (RAIM) techniques and RAIM availability, and GPS integrity monitoring at a ground reference station. Particular attention is paid to the mathematical aspects of the GPS integrity monitoring system. The research has been built upon the stringent integrity requirements defined by civil aviation community, and concentrates on the capability and performance investigation of practical integrity monitoring systems with rigorous mathematical and statistical concepts and approaches. Major contributions of this research are: • Rigorous integrity and continuity risk analysis for aircraft precision approach. Based on the joint probability density function of the affecting components, the integrity and continuity risks of aircraft precision approach with DGPS were computed. This advanced the conventional method of allocating the risk probability. • A theoretical study of RAIM test power. This is the first time a theoretical study on RAIM test power based on the probability statistical theory has been presented, resulting in a new set of RAIM criteria. • Development of a GPS integrity monitoring and DGPS quality control system based on GPS reference station. A prototype of GPS integrity monitoring and DGPS correction prediction system has been developed and tested, based on the A USN A V GPS base station on the roof of QUT ITE Building.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin’s notion of finite thickness and Wright’s work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara’s notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let Omega be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m >0, the class of languages defined by formal systems of length <= m: • is identifiable in the limit from positive data with a mind change bound of Omega (power)m; • is identifiable in the limit from both positive and negative data with an ordinal mind change bound of Omega × m. The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-bounded linearly covering programs, and Krishna Rao’s depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered.