979 resultados para biological assays
Resumo:
ORP2 is a member of mammalian oxysterol binding protein (OSBP)-related protein/gene family (ORPs), which is found in almost every eukaryotic organism. ORPs have been suggested to participate in the regulation of cellular lipid metabolism, vesicle trafficking and cellular signaling. ORP2 is a cytosolic protein that is ubiquitously expressed and most abundant in the brain. In previous studies employing stable cell lines with constitutive ORP2 overexpression ORP2 was shown to affect cellular cholesterol metabolism. The aim of this study was to characterize the properties and function of ORP2 further. ORP2 ligands were searched for among sterols and phosphoinositides using purified ORP2 and in vitro binding assays. As expected, ORP2 bound several oxysterols and cholesterol, the highest affinity ligand being 22(R)hydroxycholesterol. In addition, affinity for anionic membrane phospholipids, phosphoinositides was observed, which may assist in the membrane targeting of ORP2. Intracellular localization of ORP2 was also investigated. ORP2 was observed on the surface of cytoplasmic lipid droplets, which are storage organelles for neutral lipids. Lipid droplet targeting of ORP2 was inhibited when 22(R)hydroxycholesterol was added to the cells or when the N-terminal FFAT-motif of ORP2 was mutated, suggesting that oxysterols and the N-terminus of ORP2 regulate the localization and the function of ORP2. The role of ORP2 in cellular lipid metabolism was studied using HeLa cell lines that can be induced to overexpress ORP2. Overexpression of ORP2 was shown to enhance cholesterol efflux from the cells resulting in a decreased amount of cellular free cholesterol. ORP2 overexpressing cells responded to the loss of cholesterol by upregulating cholesterol synthesis and uptake. Intriguingly, also cholesterol esterification was increased in ORP2 overexpressing cells. These results may be explained by the ability of ORP2 to bind and thus transport cholesterol, which most likely leads to changes in cholesterol metabolism when ORP2 is overexpressed. ORP2 function was further investigated by silencing the endogenous ORP2 expression with short interfering RNAs (siRNA) in A431 cells. Silencing of ORP2 led to a delayed break-down of triglycerides under lipolytic conditions and an increased amount of cholesteryl esters in the presence of excess triglycerides. Together these results suggest that ORP2 is a sterol-regulated protein that functions on the surface of cytoplasmic lipid droplets to regulate the metabolism of triglycerides and cholesteryl esters. Although the exact mode of ORP2 action still remains unclear, this study serves as a good basis to investigate the molecular mechanisms and possible cell type specific functions of ORP2.
Resumo:
The inßuence of the sperm motility stimulant pentoxifylline (PF) on preimplantation embryo development in hamsters was evaluated. Eight-cell embryos were cultured in hamster embryo culture medium (HECM)-2, with or without PF (0· 0233·6 mM). There was 90%, 37% and 29% inhibition of blastocyst development by 3·6 (used for human sperm), 0·9 and 0 ·45 mM PF, respectively. However, 23 µM PF (exposed to hamster oocytes during IVF) signicantly (P < 0·05) improved blastocyst development (63· 6% v. 51· 8%); morulae development was, however, not curtailed by 0·45 mM or 0·9 mM PF (51·8%±6·0 or 50·5%±11·3, respectively). Post-implantation viability of PF-treated embryos was assessed by embryo transfer; 43% of 80 PF-treated embryos implanted compared with 40% of 79 control embryos. Of the 9 recipients, 6 females delivered pups (19, i.e. 16% of transferred embryos or 53% of implanted embryos). These data show that in hamsters, continuous presence of PF at 0·45-3·6 mM is detrimental to 8-cell embryo development whereas 23 µM PF improves the development of embryos to viable blastocysts which produce live offspring.
Resumo:
We have developed a totally new class of nonporphyrin photodynamic therapeutic agents with a specific focus on two lead candidates azadipyrromethene (ADPM)01 and ADPM06. Confocal laser scanning microscopy imaging showed that these compounds are exclusively localised to the cytosolic compartment, with specific accumulation in the endoplasmic reticulum and to a lesser extent in the mitochondria. Light-induced toxicity assays, carried out over a broad range of human tumour cell lines, displayed EC50 values in the micro-molar range for ADPM01 and nano-molar range for ADPM06, with no discernable activity bias for a specific cell type. Strikingly, the more active agent, ADPM06, even retained significant activity under hypoxic conditions. Both photosensitisers showed low to nondeterminable dark toxicity. Flow cytometric analysis revealed that ADPM01 and ADPM06 were highly effective at inducing apoptosis as a mode of cell death. The photophysical and biological characteristics of these PDT agents suggest that they have potential for the development of new anticancer therapeutics. © 2005 Cancer Research UK.
Resumo:
The growth factors of the glial cell line-derived neurotrophic factor (GDNF) family consisting of GDNF, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), are involved in the development, differentiation and maintenance of many types of neurons. They also have important functions outside the nervous system in the development of kidney, testis and thyroid gland. Each of these GFLs preferentially binds to one of the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptors α (GFRα). GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The GFLs in the complex with their cognate GFRα receptors all bind to and signal through the receptor tyrosine kinase RET. Alternative splicing of the mouse GFRα4 gene yields three splice isoforms. These had been described as putative GPI-anchored, transmembrane and soluble forms. My goal was to characterise the function of the different forms of mouse GFRα4. I firstly found that the putative GPI-anchored GFRα4 (GFRα4-GPI) is glycosylated, membrane-bound, GPI-anchored and interacts with PSPN and RET. We also showed that mouse GFRα4-GPI mediates PSPN-induced phosphorylation of RET, promotes PSPN-dependent neuronal differentiation of the rat pheochromocytoma cell line PC6-3 and PSPN-dependent survival of cerebellar granule neurons (CGN). However, although this receptor can mediate PSPN-signalling and activate RET, GFRα4-GPI does not recruit RET into lipid rafts. The recruitment of RET into lipid rafts has previously been thought to be a crucial event for GDNF- and GFL-mediated signalling via RET. I secondly demonstrated that the putative transmembrane GFRα4 (GFRα4-TM) is indeed a real transmembrane GFRα4 protein. Although it has a weak binding capacity for PSPN, it can not mediate PSPN-dependent phosphorylation of RET, neuronal differentiation or survival. These data show that GFRα4-TM is inactive as a receptor for PSPN. Surprisingly, GFRα4-TM can negatively regulate PSPN-mediated signalling via GFRα4-GPI. GFRα4-TM interacts with GFRα4-GPI and blocks PSPN-induced phosphorylation of RET, neuronal differentiation as well as survival. Taken together, our data show that GFRα4-TM may act as a dominant negative inhibitor of PSPN-mediated signaling. The most exciting part of my work was the finding that the putative soluble GFRα4 (GFRα4-sol) can form homodimers and function as an agonist of the RET receptor. In the absence of PSPN, GFRα4-sol can promote the phosphorylation of RET, trigger the activation of the PI-3K/AKT pathway, induce neuronal differentiation and support the survival of CGN. Our findings are in line with a recent publication showing the GFRα4-sol might contribute to the inherited cancer syndrome multiple endocrine neoplasia type 2. Our data provide an explanation to how GFRα4-sol may cause or modify the disease. Mammalian GFRα4 receptors all lack the first Cys-rich domain which is present in other GFRα receptors. In the final part of my work I have studied the function of this particular domain. I created a truncated GFRα1 construct lacking the first Cys-rich domain. Using binding assays in both cellular and cell-free systems, phosphorylation assays with RET, as well as neurite outgrowth assays, we found that the first Cys-rich domain contributes to an optimal function of GFRα1, by stabilizing the interaction between GDNF and GFRα1.
Resumo:
MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNAs' Target Sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)-, and femoral neck (FN)-bone mineral density (BMD). In stage I, 41,102 poly-miRTSs were meta-analyzed in 7 cohorts with a genome-wide significance (GWS) α=0.05/41,102=1.22×10-6. By applying α=5×10-5 (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P-value=7.67×10-6 and 1.58×10-5) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P-value=5.08×10-3) at α=0.10/11=9.09×10-3. PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P-value=7.55×10-6) at α=0.05/2=0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P-value=8.87×10-12). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation. © The Author 2015. Published by Oxford University Press. All rights reserved.
Resumo:
Mismatch repair (MMR) mechanisms repair DNA damage occurring during replication and recombination. To date, five human MMR genes, MSH2, MHS6, MSH3, MLH1 and PMS2 are known to be involved in the MMR function. Human MMR proteins form 3 different heterodimers: MutSα (MSH2 and MSH6) and MutSβ (MSH2 and MSH3), which are needed for mismatch recognition and binding, and MutLα (MLH1 and PMS2), which is needed for mediating interactions between MutS homologues and other MMR proteins. The other two MutL homologues, MLH3 and PMS1, have been shown to heterodimerize with MLH1. However, the heterodimers MutLγ (MLH1and MLH3) and MutLβ (MLH1 and PMS1) are able to correct mismatches only with low or no efficiency, respectively. A deficient MMR mechanism is associated with the hereditary colorectal cancer syndrome called hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome. HNPCC is the most common hereditary colorectal cancer syndrome and accounts for 2-5% of all colorectal cancer cases. HNPCC-associated mutations have been found in 5 MMR genes: MLH1, MSH2, MSH6, PMS2 and MLH3. Most of the mutations have been found in MLH1 and MSH2 (~90%) and are associated with typical HNPCC, while mutations in MSH6, PMS2 and MLH3 are mainly linked to putative HNPCC families lacking the characteristics of the syndrome. More data of MLH3 mutations are needed to assess the significance of its mutations in HNPCC. In this study, were functionally characterized 51 nontruncating mutations in the MLH1, MLH3 and MSH2 genes to address their pathogenic significance and mechanism of pathogenicity. Of the 36 MLH1 mutations, 22 were deficient in more than one assay, 2 variants were impaired only in one assay, and 12 variants behaved like the wild type protein, whereas all seven MLH3 mutants functioned like the wild type protein in the assays. To further clarify the role and relevance of MLH3 in MMR, we analyzed the subcellular localization of the native MutL homologue proteins. Our immunofluorescence analyses indicated that when all the three MutL homologues are natively expressed in human cells, endogenous MLH1 and PMS2 localize in the nucleus, whereas MLH3 stays in the cytoplasm. The coexpression of MLH3 with MLH1 results in its partial nuclear localization. Only one MSH2 mutation was pathogenic in the in vitro MMR assay. Our study on MLH1 mutations could clearly distinguish nontruncating alterations with severe functional defects from those not or only slightly impaired in protein function. However, our study on MLH3 mutations suggest that MLH3 mutations per se are not sufficient to trigger MMR deficiency and the continuous nuclear localization of MLH1 and PMS2 suggest that MutLα has a major activity in MMR in vivo. Together with our functional assays, this confirms that MutLγ is a less efficient MMR complex than MutLα.
Resumo:
Plants produce a diversity of secondary metabolites, i.e., low-molecular-weight compounds that have primarily ecological functions in plants. The flavonoid pathway is one of the most studied biosynthetic pathways in plants. In order to understand biosynthetic pathways fully, it is necessary to isolate and purify the enzymes of the pathways to study individual steps and to study the regulatory genes of the pathways. Chalcone synthases are key enzymes in the formation of several groups of flavonoids, including anthocyanins. In this study, a new chalcone synthase enzyme (GCHS4), which may be one of the main contributors to flower colour, was characterised from the ornamental plant Gerbera hybrida. In addition, four chalcone synthase-like genes and enzymes (GCHS17, GCHS17b, GCHS26 and GCHS26b) were studied. Spatial expression of the polyketide synthase gene family in gerbera was also analysed with quantitative RT-PCR from 12 tissues, including several developmental stages and flower types. A previously identified MYB transcription factor from gerbera, GMYB10, which regulates the anthocyanin pathway, was transferred to gerbera and the phenotypes were analysed. Total anthocyanin content and anthocyanidin profiles of control and transgenic samples were compared spectrophotometrically and with HPLC. The overexpression of GMYB10 alone was able to change anthocyanin pigmentation: cyanidin pigmentation was induced and pelargonidin pigmentation was increased. The gerbera 9K cDNA microarray was used to compare the gene expression profiles of transgenic tissues against the corresponding control tissues to reveal putative target genes for GMYB10. GMYB10 overexpression affected the expression of both early and late biosynthetic genes in anthocyanin-accumulating transgenic tissues, including the newly isolated gene GCHS4. Two new MYB domain factors, named as GMYB11 and GMYB12, were also upregulated. Gene transfer is not only a powerful tool for basic research, but also for plant breeding. However, crop improvement by genetic modification (GM) remains controversial, at least in Europe. Many of the concerns relating to both human health and to ecological impacts relate to changes in the secondary metabolites of GM crops. In the second part of this study, qualitative and quantitative differences in cytotoxicity and metabolic fingerprints between 225 genetically modified Gerbera hybrida lines and 42 non-GM Gerbera varieties were compared. There was no evidence for any major qualitative and quantitative changes between the GM lines and non-GM varieties. The developed cell viability assays offer also a model scheme for cell-based cytotoxicity screening of a large variety of GM plants in standardized conditions.
Resumo:
The recA locus of pathogenic mycobacteria differs from that of nonpathogenic species because it contains large intervening sequences nested in the RecA homology region that are excised by an unusual protein-splicing reaction. In vivo assays indicated that Mycobacterium tuberculosis recA partially complemented Escherichia coli recA mutants for recombination and mutagenesis. Further, splicing of the 85 kDa precursor to 38 kDa MtRecA protein was necessary for the display of its activity, in vivo. To gain insights into the molecular basis for partial and lack of complementation by MtRecA and 85 kDa proteins, respectively, we purified both of them to homogeneity. MtRecA protein, but not the 85 kDa form, bound stoichiometrically to single-stranded DNA in the presence of ATP. MtRecA protein was cross-linked to 8-azidoadenosine 5'-triphosphate with reduced efficiency, and kinetic analysis of ATPase activity suggested that it is due to decreased affinity for ATP. In contrast, the 85 kDa form was unable to bind ATP, in the presence or absence of ssDNA and, consequently, was entirely devoid of ATPase activity. Molecular modeling studies suggested that the decreased affinity of MtRecA protein for ATP and the reduced efficiency of its hydrolysis might be due to the widening of the cleft which alters the hydrogen bonds and the contact area between the enzyme and the substrate and changes in the disposition of the amino acid residues around the magnesium ion and the gamma-phosphate. The formation of joint molecules promoted by MtRecA protein was stimulated by SSB when the former was added first. The probability of an association between the lack and partial levels of biological activity of RecA protein(s) to that of illegitimate recombination in pathogenic mycobacteria is considered.
Resumo:
Scratch assays are difficult to reproduce. Here we identify a previously overlooked source of variability which could partially explain this difficulty. We analyse a suite of scratch assays in which we vary the initial degree of confluence (initial cell density). Our results indicate that the rate of re-colonisation is very sensitive to the initial density. To quantify the relative roles of cell migration and proliferation, we calibrate the solution of the Fisher–Kolmogorov model to cell density profiles to provide estimates of the cell diffusivity, D, and the cell proliferation rate, λ. This procedure indicates that the estimates of D and λ are very sensitive to the initial density. This dependence suggests that the Fisher–Kolmogorov model does not accurately represent the details of the collective cell spreading process, since this model assumes that D and λ are constants that ought to be independent of the initial density. Since higher initial cell density leads to enhanced spreading, we also calibrate the solution of the Porous–Fisher model to the data as this model assumes that the cell flux is an increasing function of the cell density. Estimates of D and λ associated with the Porous–Fisher model are less sensitive to the initial density, suggesting that the Porous–Fisher model provides a better description of the experiments.
Resumo:
Double-stranded RNA (dsRNA) viruses encode only a single protein species that contains RNA-dependent RNA polymerase (RdRP) motifs. This protein is a central component in the life cycle of a dsRNA virus, carrying out both RNA transcription and replication. The architecture of viral RdRPs resembles that of a 'cupped right hand' with fingers, palm and thumb domains. Those applying de novo initiation have additional structural features, including a flexible C-terminal domain that constitutes the priming platform. Moreover, viral RdRPs must be able to interact with the incoming 3'-terminus of the template and position it so that a productive binary complex is formed. Bacteriophage phi6 of the Cystoviridae family is to date one of the best studied dsRNA viruses. The purified recombinant phi6 RdRP is highly active in vitro and possesses both RNA replication and transcription activities. The extensive biochemical observations and the atomic level crystal structure of the phi6 RdRP provides an excellent platform for in-depth studies of RNA replication in vitro. In this thesis, targeted structure-based mutagenesis, enzymatic assays and molecular mapping of phi6 RdRP and its RNA were used to elucidate the formation of productive RNA-polymerase binary complexes. The positively charged rim of the template tunnel was shown to have a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. This work demonstrated that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi6 RdRP can be greatly enhanced. Furthermore, proteolyzed phi6 RdRPs that possess a nick in the polypeptide chain at the hinge region, which is part of the extended loop, were better suited for catalysis at higher temperatures whilst favouring back-primed initiation. The clipped C-terminus remains associated with the main body of the polymerase and the hinge region, although structurally disordered, is involved in the control of C-terminal domain displacement. The accumulated knowhow on bacteriophage phi6 was utilized in the development of two technologies for the production of dsRNA: (i) an in vitro system that combines the T7 RNA polymerase and the phi6 RdRP to generate dsRNA molecules of practically unlimited length, and (ii) an in vivo RNA replication system based on restricted infection with phi6 polymerase complexes in bacterial cells to produce virtually unlimited amounts of dsRNA. The pools of small interfering RNAs derived from dsRNA produced by these systems were validated and shown to efficiently decrease the expression of both exogenous and endogenous targets.
Resumo:
Viral infections caused by herpesviruses are common complications after organ transplantation and they are associated with substantial morbidity and even mortality. Herpesviruses remain in a latent state in a host after primary infection and may reactivate later. CMV infection is the most important viral infection after liver transplantation. Less is known about the significance of human herpesvirus-6 (HHV-6). EBV is believed to play a major role in the development of post-transplant lymphoproliferative disorders (PTLD). The aim of this study was to investigate the CMV-, EBV- and HHV-6 DNAemia after liver transplantation by frequent monitoring of adult liver transplant patients. The presence of CMV, EBV and HHV-6 DNA were demonstrated by in situ hybridization assays and by real-time PCR methods from peripheral blood specimens. CMV and HHV-6 antigens were demonstrated by antigenemia assays and compared to the viral DNAemia. The response to antiviral therapy was also investigated. CMV-DNAemia appeared earlier than CMV pp65-antigenemia after liver transplantation. CMV infections were treated with ganciclovir. However, most of the treated patients demonstrated persistence of CMV-DNA for up to several months. Continuous CMV-DNA expression of peripheral blood leukocytes showed that the virus is not eliminated by ganciclovir and recurrences can be expected during several months after liver transplantation. HHV-6 DNAemia / antigenemia was common and occurred usually within the first three months after liver transplantation together with CMV. The HHV-6 DNA expression in peripheral blood mononuclear cells correlated well with HHV-6 antigenemia. Antiviral treatment significantly decreased the number of HHV-6 DNA positive cells, demonstrating the response to ganciclovir treatment. Clinically silent EBV reactivations with low viral loads were relatively common after liver transplantation. These EBV-DNAemias usually appeared within the first three months after liver transplantation together with betaherpesviruses (CMV, HHV-6, HHV-7). One patient developed high EBV viral loads and developed PTLD. These results indicate that frequent monitoring of EBV-DNA levels can be useful to detect liver transplant patients at risk of developing PTLD.
Resumo:
Arabinomannan-containing glycolipids, relevant to the mycobacterial cell-wall component lipoarabinomannan, were synthesized by chemical methods. The glycolipids were presented with tri- and tetrasaccharide arabinomannans as the sugar portion and a double alkyl chain as the lyophilic portion. Following synthesis, systematic biological and biophysical studies were undertaken in order to identify the effects of the glycolipids during mycobacterium growth. The studies included mycobacterial growth, biofilm formation and motility assays. From the studies, it was observed that the synthetic glycolipid with higher arabinan residues inhibited the mycobacterial growth, lessened the biofilm formation and impaired the motility of mycobacteria. A surface plasmon resonance study involving the immobilized glycan surface and the mycobacterial crude lysates as analytes showed specificities of the interactions. Further, it was found that cell lysates from motile bacteria bound oligosaccharide with higher affinity than non-motile bacteria.
Resumo:
The identification of sequence (amino acids or nucleotides) motifs in a particular order in biological sequences has proved to be of interest. This paper describes a computing server, SSMBS, which can locate anddisplay the occurrences of user-defined biologically important sequence motifs (a maximum of five) present in a specific order in protein and nucleotide sequences. While the server can efficiently locate motifs specified using regular expressions, it can also find occurrences of long and complex motifs. The computation is carried out by an algorithm developed using the concepts of quantifiers in regular expressions. The web server is available to users around the clock at http://dicsoft1.physics.iisc.ernet.in/ssmbs/.
Resumo:
The RecA intein of Mycobacterium tuberculosis, a novel double-stranded DNA endonuclease, requires both Mn(2+) and ATP for efficient cleavage of the inteinless recA allele. In this study, we show that Mg(2+) alone was sufficient to stimulate PI-MtuI to cleave double-stranded DNA at ectopic sites. In the absence of Mg(2+), PI-MtuI formed complexes with topologically different forms of DNA containing ectopic recognition sequences with equal affinity but failed to cleave DNA. We observed that PI-MtuI was able to inflict double-strand breaks robustly within the ectopic recognition sequence to generate either a blunt end or 1-2-nucleotide 3'-hydroxyl overhangs. Mutational analyses of the presumptive metal ion-binding ligands (Asp(122), Asp(222), and Glu(220)) together with immunoprecipitation assays provided compelling evidence to link both the Mg(2+)- and Mn(2+) and ATP-dependent endonuclease activities to PI-MtuI. The kinetic mechanism of PI-MtuI promoted cleavage of ectopic DNA sites proceeded through a sequential mechanism with transient accumulation of nicked circular duplex DNA as an intermediate. Together, these data suggest that PI-MtuI, like group II introns, might mediate ectopic DNA transposition and hence its lateral transfer in natural populations.