911 resultados para architectural computation
Resumo:
Though much recent scholarship has investigated the potential of writing in creative practice (including visual arts, drama, even choreography), there are few models in the literature which discuss writing in the context of architectural education. The paper presented here aims to address this dearth of pedagogical research, analysing the cross-disciplinary Writing Architecture Project based in the undergraduate course of the School of Architecture at QUB. Over the course of four years, teaching staff, in partnership with the university's Learning Development Service, technicians and specialist librarians, have addressed an unfortunately persistent struggle for both architecture students and professionals alike to research and construct argument in written form. The paper examines the current problem as identified in the literature before analysing the efficacy of the variety of teaching methods used in the Writing Architecture Project, with conclusions about the project’s success and continuing challenges.
Resumo:
Benefiting from design in theory learning is not common in architecture schools. The general practice is to design in studio and to theorise in lectures. In the undergraduate module History and Theory in Architecture II at Queen’s University Belfast, students attend interactive lectures, participate in reading group discussions, design TextObjects, and write essays. TextObjects contain textual, audio and/or graphic representations that highlight a single concept or a complex set of issues derived from readings. Students experiment with diverse media, such as filmmaking, photography, and graphic design, some of which they experience for the first time. Lectures and readings revolve around theories of architectural representation, media and communication, which are practiced through TextObjects. This is a new way to link theory and practice in architectural education. Through action research, this study analyses this innovative teaching method called TextObject, which brings design and practice into architectural theory education to stimulate students towards critical thinking. The pedagogical research of architectural theoretician Necdet Teymur (1992, 1996, 2002) underlies the study.
Resumo:
Local computation in join trees or acyclic hypertrees has been shown to be linked to a particular algebraic structure, called valuation algebra.There are many models of this algebraic structure ranging from probability theory to numerical analysis, relational databases and various classical and non-classical logics. It turns out that many interesting models of valuation algebras may be derived from semiring valued mappings. In this paper we study how valuation algebras are induced by semirings and how the structure of the valuation algebra is related to the algebraic structure of the semiring. In particular, c-semirings with idempotent multiplication induce idempotent valuation algebras and therefore permit particularly efficient architectures for local computation. Also important are semirings whose multiplicative semigroup is embedded in a union of groups. They induce valuation algebras with a partially defined division. For these valuation algebras, the well-known architectures for Bayesian networks apply. We also extend the general computational framework to allow derivation of bounds and approximations, for when exact computation is not feasible.
Resumo:
Details are presented of the IRIS synthesis system for high-performance digital signal processing. This tool allows non-specialists to automatically derive VLSI circuit architectures from high-level, algorithmic representations, and provides a quick route to silicon implementation. The applicability of the system is demonstrated using the design example of a one-dimensional Discrete Cosine Transform circuit.
Resumo:
We describe recent progress of an ongoing research programme aimed at producing computational science software that can exploit high performance architectures in the atomic physics application domain. We examine the computational bottleneck of matrix construction in a suite of two-dimensional R-matrix propagation programs, 2DRMP, that are aimed at creating virtual electron collision experiments on HPC architectures. We build on Ixaru's extended frequency dependent quadrature rules (EFDQR) for Slater integrals and examine the challenge of constructing Hamiltonian matrices in parallel across an m-processor compute node in a block cyclic distribution for subsequent diagonalization by ScaLAPACK.
Resumo:
This paper describes the computation of stress intensity factors (SIFs) for cracks in functionally graded materials (FGMs) using an extended element-free Galerkin (XEFG) method. The SIFs are extracted through the crack closure integral (CCI) with a local smoothing technique, non-equilibrium and incompatibility formulations of the interaction integral and the displacement method. The results for mode I and mixed mode case studies are presented and compared with those available in the literature. They are found to be in good agreement where the average absolute error for the CCI with local smoothing, despite its simplicity, yielded a high level of accuracy.