962 resultados para annealing Al2O3
Resumo:
MoNi/gamma-Al2O3 catalysts were prepared by the impregnation method. The catalyst samples were characterized by XRD and TPR. The effects of Mo promoter content and the catalyst reducing temperature Oil hydrotreatment activity of the catalyst were studied under 200 degrees C and 3 MPa hydrogen pressure using acetic acid as the model compound. The XRD results indicate that the addition of Mo promoter is beneficial to the uniformity of nickel species on the catalyst and decreases the Interaction between nickel species and the support Which results in the decrease the of NiAl2O4 spinel formation. The addition of Mo promoter also decreases the reducing temperature of the catalyst. After the catalyst of 0.06 MoNi/gamma-Al2O3 being reduced Under the atmosphere of H-2/N-2(5/95, V/V), nickel oxide was reduced to Ni-0. The reaction was promoted obviously upon the addition of the MoNi/gamma-Al2O3 catalyst reduced at 600 degrees C. The Mo-modified Ni/gamma-Al2O3 catalyst reduced at 600 degrees C displayed the highest activity during the reaction, the conversion of acetic acid reached the highest point of 33.2%. The products included ethyl acetate and water.
Resumo:
The rapid thermal annealing temperature dependence of the recrystallization, Yb migration and its optical activation were studied for Yb-implanted silicon. For the annealing regime 800-1000-degrees-C, the Yb segregates both at the crystal/amorphous interface and at the surface, which is different from the usual segregation of Er at the crystal/amorphous interface, and the efficiency of optical activation also increases with annealing temperature. However, the amorphous layer regrows completely and no photoluminescence is observed after the annealing at 1200-degrees-C.
Resumo:
Up to now, in most of the research work done on the effect of hydrogen on a Schottky barrier, the hydrogen was introduced into the semiconductor before metal deposition. This letter reports that hydrogen can be effectively introduced into the Schottky barriers (SBs) of Au/n-GaAs and Ti/n-GaAs by plasma hydrogen treatment (PHT) after metal deposition on [100] oriented n-GaAs substrates. The Schottky barrier height (SBH) of a SB containing hydrogen shows the zero/reverse bias annealing (ZBA/RBA) effect. ZBA makes the SBH decrease and RBA makes it increase. The variations in the SBHs are reversible. In order to obtain obvious ZBA/RBA effects, selection of the temperature for plasma hydrogen treatment is important, and it is indicated that 100-degrees-C for Au/n-GaAs and 150-degrees-C for Ti/n-GaAs are suitable temperatures. It is concluded from the analysis of experimental results that only the hydrogen located at or near the metal-semiconductor interface, rather than the hydrogen in the bulk of either the semiconductor or the metal, is responsible for the ZBA/RBA effect on SBH.
Resumo:
Molecular beam epitaxy GaAs films on Si, with thicknesses ranging from 0.9-2.0-mu-m, were implanted with Si ions at 1.2-2.6 MeV to doses in the range 10(15)-10(16) cm-2. Subsequent rapid infrared thermal annealing was carried out at 850-degrees-C for 15 s in a flowing N2 atmosphere. Crystalline quality was analyzed by using Rutherfold backscattering/channeling technique and Raman scattering spectrometry. The experimental results show that the recrystallization process greatly depends on the dose and energy of implanted ions. Complete recrystallization with better crystalline quality can be obtained under proper implantation and subsequent annealing. In the improved layer the defect density was much lower than in the as-grown layer, especially near the interface.
Resumo:
A high-resistivity defect layer buried beneath the silicon surface layer by using proton implantation and two-step conventional furnace annealing is described. During the first annealing step (600-degrees-C), implanted hydrogen atoms move towards the damage region and then coalesce into hydrogen gas bubbles at the residual defect layer. During the second annealing step (1180-degrees-C) these bubbles do not move due to their large volume. Structural defects are formed around the bubbles at a depth of approximately 0.5-mu-m. The defect layer results in a high resistivity value. Experiments show that the quality of the surface layer has been improved because the surface Hall mobility increased by 20%. The sample was investigated by transmission electron microscopy.
Resumo:
The interaction of Co with Si and SiO2 during rapid thermal annealing has been investigated. Phase sequence, layer morphology, and reaction kinetics were studied by sheet resistance, x-ray diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy. With increasing annealing temperature, Co film on Si(100) is transformed sequentially into Co2Si, CoSi, and finally CoSi2 which corresponds to the minimum of sheet resistance. No evidence of silicide formation was observed for Co/SiO2 annealed even at the high temperature of 1050-degrees-C.
REGROWTH OF MBE-GAAS FILMS ON SI SUBSTRATES BY HIGH-ENERGY ION-IMPLANTATION AND SUBSEQUENT ANNEALING
Resumo:
Rapid thermal annealing of arsenic implanted Si1-xGex was studied by secondary ion-mass spectroscopy (SIMS) and spreading resistance probe (SRP) over a wide range of Ge fractions (0-43%). Redistribution of the implanted arsenic was followed as a function of Ge content and annealing temperature. Arsenic concentration profiles from SIMS indicated that the behavior of implanted arsenic in Si1-xGex after RTA was different from that in Si, and the Si1-xGex samples exhibited box-shaped, concentration-dependent diffusion profiles with increasing Ge content. The maximum concentrations of electrically active arsenic in Si1-xGex was found to decrease with increasing Ge content. Experimental results showed that the arsenic diffusion is enhanced with increasing temperature for certain Ge content and strongly dependent on Ge content, and the higher Ge content, the faster As diffusion.
Resumo:
Neutron-irradiated high-resistivity silicon detectors have been subjected to elevated temperature annealing (ETA). It has been found that both detector full depletion voltage and leakage current exhibit abnormal annealing (or ''reverse annealing'') behaviour for highly irradiated detectors: increase with ETA. Laser induced current measurements indicate a net increase of acceptor type space charges associated with the full depletion voltage increase after ETA. Current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) data show that the dominant effect is the increase of a level at 0.39 eV below the conduction band (E(c) - 0.39 eV) or a level above the valence band (E(v) + 0.39 eV). Candidates tentatively identified for this level are the singly charged double vacancy (V-V-) level at E(c) - 0.39 eV, the carbon interstitial-oxygen interstitial (C-i-O-i) level at E(v) + 0.36 eV, and/or the tri-vacancy-oxygen center (V3O) at E(v) + 0.40 eV.
Resumo:
High efficiency AlxGa1-xAs/GaAs heteroface solar cells have been fabricated by an improved multi-wafer squeezing graphite boat liquid phase epitaxy (LPE) technique, which enables simultaneous growth of twenty 2.3 X 2.3cm(2) epilayers in one run. A total area conversion efficiency of 17.33% is exhibited (1sun, AM0, 2.0 x 2.0cm(2)). The shallow junction cell shows more resistance to 1 MeV electron radiation than the deep one. After isochronal or isothermal annealing the density and the number of deep level traps induced by irradiation are reduced effectively for the solar cells with deep junction and bombardment under high electron fluences.