955 resultados para adsorbed
Resumo:
Micro and nanomechanical resonators are powerful and label-free sensors of analytes in various environments. Their response, however, is a convolution of mass, rigidity, and nanoscale heterogeneity of adsorbates. Here we demonstrate a procedure to disentangle this complex sensor response, to simultaneously measure both mass and elastic properties of nanometer thick samples. This turns an apparent disadvantage of these resonators into a striking and unique asset, enabling them to measure more than mass alone.
Resumo:
在黄土高原南部旱地长期肥料定位试验的基础上研究了土壤钾素空间分布特征及其有效性。结果表明:长期施肥后土壤中特殊吸附性钾(SAK)和非特殊吸附性钾(NSAK)储量增加,但水溶性钾(WSK)和非交换性钾(NEK)则有明显的下降,单施N水溶性钾下降了48.24%,单施P下降32.32%,NP配施和NPK配施分别下降10.61%和17.93%,非交换性钾降幅为8.56%~24.91%。增施钾肥可以缓解因长期施肥作物生长所携出的钾素,增加耕层土壤中的水溶性钾、非特殊吸附性钾及特殊吸附性钾。相关分析结果表明,土壤不同形态钾素对速效钾的重要性依次为WSK>NSAK>SAK>NEK,土壤速效钾与水溶性钾、非特殊吸附性钾呈显著相关,与特殊吸附性钾和非交换性钾无显著相关性。
Resumo:
The initial adsorption stages and the interaction of oxygen on FeSi surfaces have been studied as a function of exposure and annealing temperature using a variety of techniques including HREELS, AES, LEED, XPS and UPS. O2 was found to adsorb dissociatively on the FeSi surfaces at room temperature. The whole adsorption process can be divided into four stages. Heating promotes the oxidation of Si, and a thin SiO2 overlayer is formed on the surface when annealed at 450-degrees-C, while all FeOx species are reduced. Models for adsorbed atomic O on the FeSi(100) surface exposed to different oxygen exposures have been put forward to account for the observed experimental results.
Resumo:
The chemical adsorption of sodium sulphide, ferrocene, hydroquinone and p-methyl-nitrobenzene onto the surface of a GaAs/AlxGa1-xAs multiquantum well semiconductor was characterized by steady state and time-resolved photoluminescence (PL) spectroscopy. The changes in the PL response, including the red shift of the emission peak of the exciton in the quantum well and the enhancement of the PL intensity, are discussed in terms of the interactions of the adsorbed molecules with surface states.
Resumo:
Adsorption of ferrocene and p-methylnitrobenzene on a GaAs/AlxGa1-xAs multiquantum well semiconductor is characterized by the changes in the photoluminescent response in terms of the interactions of adsorbed molecules with surface states.
Resumo:
本论文采用第三代超分子受体化合物——磺化硫杂杯芳烃(简称TCAS)作为活性组分,将其加载到树脂载体上,制成一种新型的TCAS吸附树脂。借助红外光谱、紫外光谱、核磁共振和电喷雾质谱等检测分析手段对TCAS吸附树脂及其制备的中间产物进行表征。采用静态批试验方法研究发现TCAS吸附树脂对重金属和卤代烃类有机物都有较好的吸附去除效果,其对Pb2+、Cd2+、Cu2+和Zn2+四种重金属的吸附容量分别达到26.32mg•g-1、18.12mg•g-1、12.24mg•g-1和6.85mg•g-1;对二氯甲烷、三氯甲烷、四氯化碳、三氯乙烯四种卤代烃的吸附容量分别为9.23 mg•g-1、7.92 mg•g-1、6.73 mg•g-1和4.34 mg•g-1。并发现温度、树脂用量和溶液pH值等因素能影响TCAS吸附树脂的吸附去除效果。同时研究了TCAS吸附树脂对污染物的吸附优先性规律、动力学规律和热力学规律。采用化学计量学分析TCAS络合重金属的紫外光谱,获得了TCAS-重金属络合物的纯紫外光谱,以及TCAS、TCAS-重金属络合物随重金属浓度变化的分布曲线,并最终解析得到TCAS与Cu、Zn、Cd和Pb的络合常数(lgβ)分别为9.79、8.72、6.87和5.00。通过多次吸附试验,考察了TCAS吸附树脂回收循环利用的可行性,发现TCAS吸附树脂可进行多次循环回收再利用。
Resumo:
含油污泥是危险废物,已列入《国家危险废物名录》。目前,热水清洗法是含油污泥处理的核心技术之一,但因含油污泥来源不同,成分性质各异,含油污泥清洗技术的普适性及规律性差。粘土矿物作为含油污泥泥质的主要成分,其吸附原油的清洗是含油污泥清洗技术的关键环节,因此,从粘土矿物性质、原油组分、清洗剂性质三个方面对粘土矿物吸附原油的清洗技术进行研究,分析其内在的规律性,是获得普适性含油污泥清洗技术的突破口。 本文结合含油污泥的理化性质分析,选取粒径范围为0~100µm高岭石、蒙脱石、绿泥石和伊利石四种粘土矿物,在优化工艺条件的基础上,研究其吸附原油在不同表面活性剂作用下的解吸规律,分析原油中不同族组分的脱附特性,筛选了针对典型粘土矿物吸附原油的高效清洗剂。 四种粘土矿物吸附原油解吸效率的大小顺序为伊利石>蒙脱石>高岭石>绿泥石。不同表面活性剂对粘土矿物吸附原油清洗效率的大小顺序为阴离子表面活性剂>非离子表面活性剂>阳离子表面活性剂。粘土矿物吸附原油中三个族组分的脱附难易顺序为饱和烃>芳烃>胶质沥青质,饱和烃的脱附效率是控制粘土矿物吸附原油总体清洗效率的最重要参数。Dodec-MNS和NPS-10是良好的粘土矿物吸附原油清洗剂,NPS–10对含油率为18.32%和29.68%的含油污泥的脱附效率分别为78.43%和84.11%。 本文同时还针对含油污泥清洗技术中清洗剂复配,提出根据含油污泥族组分特性,选取亲油基性质与对应族组分性质接近的表面活性剂进行复配的方法,方法经实验验证可行,可作为一种含油污泥清洗剂复配的基本方法。
Resumo:
A series of Pt/Mg-Al-O catalysts with different Mg/Al atomic ratios were prepared. The NOx storage capacities of these catalysts were measured by isothermal storage at 350 degreesC. It was found that the NOx storage capacity increased with increasing Mg/Al atomic ratios. The catalytic behaviors of Pt/Mg-Al-O and Pt/MgO were studied with storage-reduction cycles at 400 degreesC. Under oxidizing conditions, NOx concentration in the outlet gas gradually increased with time, which indicated the catalysts could store NOx effectively. After a switch from oxidizing conditions to reducing conditions, NOx desorption peak emerged immediately due to the incomplete reduction of stored NOx, which lowered the total NOx conversion. With increasing Mg/Al atomic ratio in the catalysts, NOx conversion increases. Pt/MgO has the highest NOx conversion because of its best activity in the reduction of NOx by C3H6. It seems that with an increasing amount of MgO in the catalysts, the self-poisoning of Pt-sites by adsorbed species during the reaction of NOx with C3H6 may be inhibited effectively.
Resumo:
The catalytic properties of the passivated, reduced passivated, and fresh bulk molybdenum nitride for hydrazine decomposition were evaluated in a microreactor. The reaction route of hydrazine decomposition over molybdenum nitride catalysts seems to be the same as that of Ir/gamma-Al2O3 catalysts. Below 673 K, the hydrazine decomposes into N-2 and NH3. Above 673 K, the hydrazine decomposes into N-2 and NH3 first, and then the produced NH3 further dissociates into N-2 and H-2. From the in situ FT-IR spectroscopy, hydrazine is adsorbed and decomposes mainly on the Mo site of the Mo2N/gamma-Al2O3 catalyst. (C) 2004 Elsevier Inc. All rights reserved.