995 resultados para Yellow mosaic virus
Resumo:
Background. Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. Methods. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. Results. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Conclusion. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Trial registration. Registration is not required for observational studies. Funding. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases, Bill & Melinda Gates Foundation, and United States Agency for International Development.
Resumo:
BACKGROUND: Yellow fever vaccine (17DV) has been investigated incompletely in human immunodeficiency virus (HIV)-infected patients, and adequate immunogenicity and safety are of concern in this population. METHODS: In the Swiss HIV Cohort Study, we identified 102 patients who received 17DV while they were HIV infected. We analyzed neutralization titers (NTs) after 17DV administration using the plaque reduction neutralization test. NTs of 1:>or=10 were defined as reactive, and those of 1:<10 were defined as nonreactive, which was considered to be nonprotective. The results were compared with data for HIV-uninfected individuals. Serious adverse events were defined as hospitalization or death within 6 weeks after receipt of 17DV. RESULTS: At the time of 17DV administration, the median CD4 cell count was 537 cells/mm(3) (range, 11-1730 cells/mm(3)), and the HIV RNA level was undetectable in 41 of 102 HIV-infected patients. During the first year after vaccination, fewer HIV-infected patients (65 [83%] of 78; P = .01) than HIV-uninfected patients revealed reactive NTs, and their NTs were significantly lower (P < .001) than in HIV-uninfected individuals. Eleven patients with initially reactive NTs lost these reactive NTs <or= 5 years after vaccination. Higher NTs during the first year after vaccination were associated with undetectable HIV RNA levels, increasing CD4 cell count, and female sex. We found no serious adverse events after 17DV administration among HIV-infected patients. CONCLUSION: Compared with HIV-uninfected individuals, HIV-infected patients respond to 17DV with lower reactive NTs, more often demonstrate nonprotective NTs, and may experience a more rapid decline in NTs during follow-up. Vaccination with 17DV appears to be safe in HIV-infected individuals who have high CD4 cell counts, although rate of serious adverse events of up to 3% cannot be excluded.
Resumo:
Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8(+) T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8(+) T cell response, with no studies beyond 5 years after vaccination. We investigated 41 vaccinees, spanning 0.27 to 35 years after vaccination. YF-specific CD8(+) T cells were readily detected in almost all donors (38 of 41), with frequencies decreasing with time. As previously described, effector cells dominated the response early after vaccination. We detected a population of naïve-like YF-specific CD8(+) T cells that was stably maintained for more than 25 years and was capable of self-renewal ex vivo. In-depth analyses of markers and genome-wide mRNA profiling showed that naïve-like YF-specific CD8(+) T cells in vaccinees (i) were distinct from genuine naïve cells in unvaccinated donors, (ii) resembled the recently described stem cell-like memory subset (Tscm), and (iii) among all differentiated subsets, had profiles closest to naïve cells. Our findings reveal that CD8(+) Tscm are efficiently induced by a vaccine in humans, persist for decades, and preserve a naïveness-like profile. These data support YF vaccination as an optimal mechanistic model for the study of long-lasting memory CD8(+) T cells in humans.
Resumo:
An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Resumo:
The cubiu (Solanum sessiliflorum) fruit, originating in the Amazon basin, is commonly used in that region for food, medicine, and cosmetics. In an experimental culture of cubiu, in order to evaluate its adaptation to conditions in the Northern region of the state of Rio de Janeiro, it was observed plants with mosaic symptoms. A cubiu plant was collected and analyzed to identify the etiological agent. After mechanical passage through a local lesion host, a host range test was performed. The virus induced chlorotic local lesions in Chenopodium quinoa, necrotic local lesions in Gomphrena globosa, mosaic in S. sessiliflorum, leaf and stem necrosis in tomato (Lycopersicon esculentum) 'Rutgers', mosaic and leaf distortion in Datura stramonium and Physalis floridana, and necrotic local lesions followed by systemic necrosis and plant death in four Nicotiana species. Electron microscopic observations of ultra thin sections from infected cubiu leaves showed the presence of spheroidal, membrane-bound particles typical of tospovirus species. Analysis of the nucleocapsid protein from concentrated virus particles indicated the presence of a 28 kDa protein. RT-PCR was performed after total RNA extraction from infected IPA-6 tomato leaves. A fragment of approximately 0,8 kbp corresponding to the N gene was amplified, cloned and sequenced. The N protein from the cubiu isolate was 95% homologous to the Groundnut ringspot virus (GRSV) protein, and no more than 85% homologous to those from Zucchini lethal chlorosis virus (ZLCV) and Chrysanthemun stem necrosis virus (CSNV), Tomato spotted wilt virus (TSWV), and Tomato chlorotic spot virus (TCSV). This is the first report of the occurrence of GRSV (or any other plant virus) in cubiu.
Resumo:
In the regions of Campinas and Sumaré, São Paulo, Brazil, hidroponically grown crops of Lettuce (Lactuca sativa) cv. Verônica, which showed virus-like symptoms were examined by electron microscope, biological, serological and molecular tests. Pleomorphic, enveloped particles (80-100 nm in diameter) were always detected in these samples. Experimentally inoculated host plants, including lettuce, reacted with tospoviruses-induced symptoms. Some differences were observed in Gomphrena globosa, which reacted by showing local lesions and systemic mosaic. Two isolates of Tomato chlorotic spot virus (TCSV) were identified by DAS-ELISA and by RT-PCR. The sequencing and alignment of the RT-PCR coat protein amplified fragments have indicated a high degree of homology with the TCSV sequences stored in the GenBank. This is the first report of losses due to a virus from the genus Tospovirus in commercial hydroponic lettuce crops in Brazil. Further epidemiological studies are needed for better understanding the spread of the virus in hydroponic crops, since Tomato spotted wilt virus (TSWV) is reported to spread through the nutritive solution.
Resumo:
Um levantamento para avaliar a ocorrência de begomovírus nas culturas de pimentão e tomateiro no estado de São Paulo foi realizado entre janeiro/2007 e julho/2008. O DNA total de amostras de pimentão (710) e de tomateiro (103) foi extraído e a presença de begomovírus foi testada por PCR. Paralelamente, as mesmas amostras foram avaliadas por amplificação por círculo rolante (RCA) seguidas de PCR, e algumas amostras positivas analisadas por RCA-RFLP com a enzima de restrição HpaII, a fim de se conhecer a variabilidade genética dos isolados. Os resultados demonstraram que, para a técnica de PCR, 99 amostras de pimentão (13,94%) e 39 de tomateiro (37,86%) foram positivas para a presença de begomovírus, enquanto que por RCA-PCR, 333 (46,90%) de pimentão e 82 (79,61%) de tomateiro mostrando a maior sensibilidade desta técnica. Seqüências correspondentes à região 5' da capa protéica (CP) e um segmento de gene da região intergênica foram analisadas e indicaram apenas a presença da espécie Tomato severe rugose virus (ToSRV). Porém, seqüenciamento parcial de clones obtidos a partir de produto RCA de tomateiro permitiu a detecção de infecção mista de ToSRV e Tomato yellow vein streak virus (ToYVSV). Por RCA-RFLP quatro padrões de restrição foram observados para o ToSRV em pimentão, enquanto que em tomateiro observaram-se 18 padrões.Os resultados indicam maior diversidade genética dos begomovírus em tomateiro quando comparada com os de pimentão.
Resumo:
TMV was tried to recover from a variety of branded cigarettes and cigars. Tobacco from six different brands of cigarettes and cigar were processed and reverse transcriptase polymerase chain reaction was employed for the detection of TMV. RTPCR confirmed the presence of TMV in tobacco from one brand of cigarette and one brand of cigar. Bean plants (Phaseolus vulgaris) were inoculated manually with tobacco sap of cigarettes resulting in the production of localized disease lesions. Together, these results showed that tobacco used to make cigarettes and cigars can function as an effective disease vector, potentially aiding the movement of infectious TMV between countries. This is an important finding prompting a need to test smoking tobacco for other virus particles that infect tobacco plants and survive processing as well as considering biosecurity measures to limit virus transmission
Resumo:
A necrose da haste da soja é causada por um vírus do gênero Carlavirus transmitido pela mosca branca Bemisia tabaci, também infectante de feijão e identificado como Cowpea mild mottle virus (CpMMV). Neste trabalho foram realizados testes para determinação do número de moscas-brancas B. tabaci biótipo B necessários para transmissão do vírus em feijoeiro e soja. Na sequência foram realizados dois outros testes, com 10 insetos por planta. Avaliaram-se períodos de acesso à aquisição (PAA) de 'Jalo' para 'Jalo', e o efeito de períodos de acesso à inoculação (PAI). Foram visualmente constatados sintomas típicos do carlavírus como mosaico, clareamento de nervuras, necrose sistêmica e redução de crescimento. Houve transmissão do vírus para 'BT-2' de feijão e 'BRS-132' de soja com apenas um inseto por planta, sendo mais eficaz nesta última espécie. A taxa de transmissão do vírus foi maior com o aumento do número de insetos por planta. E o PAA foi determinado após 15' de tempo para aquisição, e o PAI com 5 min e aumentando os períodos de acesso a aquisição e inoculação aumentou-se a taxa de transmissão.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The study of the in-situ cellular immune response is very important for the understanding of different liver infections. In the present study, 53 liver samples obtained by viscerotomy from patients who died during the course of jungle yellow fever were analyzed. The diagnosis was confirmed by serology, viral isolation and virus-specific immunohistochemistry. The specimens were analyzed by immunohistochemistry using specific antibodies for apoptosis, CD45RO, CD4, CD8, CD20, S100, CD57 and CD68. Quantitative analysis of the labeling pattern showed a clear predominance of the different phenotypes in the portal tract and midzone region of the acini. There was a predominance of T CD4+ lymphocytes, accompanied by the presence of T CD8+ lymphocytes, natural killer cells (CD57), macrophages and antigen-presenting cells (S100). The disproportion between the intensity of inflammation and the degree of hepatic injury was probably due to the intense apoptotic component, which classically does not induce an inflammatory response. The present study demonstrates that, despite the disproportion between injury and inflammation, the cellular immune response plays an important role in the pathogenesis of the hepatocytic injury observed in yellow fever, probably as a result of cytolytic actions through mechanisms involving MHC II and the activation of Fas receptors and granzymes/perforins. (C) 2006 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A high incidence of plants with mosaic, chlorotic spots, ringspots, necrosis, smaller leaves, and stunting was observed on peanut crops (Arachis hypogaea L.) in Itapolis, So Paulo State, Brazil. Transmission electron microscope examination of thin sections of infected leaves revealed the presence of spheroidal particles, ca. 80 nm in diameter, suggestive of Tospovirus. A DNA fragment of similar to 600 bp was amplified by RT-PCR from total RNA extracted from infected tissues using primers specific for the nucleocapsid gene of Groundnut ringspot virus (GRSV). Nucleotide and deduced amino acid sequences of the fragments showed high identities with known GRSV isolates.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Recombination is a significant factor driving genomic evolution, but it is not well understood in Dengue virus. We used phylogenetic methods to search for recombination in 636 Dengue virus type 3 (DENV-3) genomes and unveiled complex recombination patterns in two strains, which appear to be the outcome of recombination between genotype II and genotype I parental DENV-3 lineages. Our findings of genomic mosaic structures suggest that strand switching during RNA synthesis may be involved in the generation of genetic diversity in dengue viruses.