964 resultados para TITANATE CERAMICS
Resumo:
The presence of pores in ceramics is directly related to the chosen forming process. So, in the starch consolidation method, the ceramics show, after burning, pores with morphology similar to that presented by this organic material. on the other hand, the increase in solid load leads up to alterations in dispersion viscosity, increasing the thermal stresses during drying and sintering processes. In order to verify the solid percentage influence in ceramic final properties, samples were prepared with silicon carbide in different compositions using or not starch as binder agent and pore forming element. The characterization of the ceramic pieces was performed by superficial roughness measurements, porosity besides by optical and scanning electron microscopy. The results showed ceramics with SiC and starch presented physical and microscopic properties slightly higher in relation to those with only ceramic powder in their composition. The presence of organic material, agglomerated and foam during the forming were essential for the final properties of the studied samples.
Resumo:
Ceramic substrates have been investigated by researchers around the world and has achieved a high interest in the scientific community, because they had high dielectric constants and excellent performance in the structures employed. Such ceramics result in miniaturized structures with dimensions well reduced and high radiation efficiency. In this work, we have used a new ceramic material called lead zinc titanate in the form of Zn0,8Pb0,2TiO3, capable of being used as a dielectric substrate in the construction of various structures of antennas. The method used in constructing the ceramic combustion synthesis was Self- Sustained High Temperature (SHS - "Self-Propagating High-Temperature Synthesis") which is defined as a process that uses highly exothermic reactions to produce various materials. Once initiated the reaction area in the reaction mixture, the heat generated is sufficient to become self-sustaining combustion in the form of a wave that propagates converting the reaction mixture into the product of interest. Were analyzed aspects of the formation of the composite Zn0,8Pb0,2TiO3 by SHS powders and characterized. The analysis consisted of determining the parameters of the reaction for the formation of the composite, as the ignition temperature and reaction mechanisms. The production of composite Zn0,8Pb0,2TiO3 by SHS performed in the laboratory, was the result of a total control of combustion temperature and after obtaining the powder began the development of ceramics. The product was obtained in the form of regular, alternating layers of porous ceramics and was obtained by uniaxial pressing. 10 The product was characterized by analysis of dilatometry, X-ray diffraction analysis and scanning electron microscopy. One of the contributions typically defined in this work is the development of a new dielectric material, nevertheless presented previously in the literature. Therefore, the structures of the antennas presented in this work consisted of new dielectric ceramics based Zn0,8Pb0,2TiO3 usually used as dielectric substrate. The materials produced were characterized in the microwave range. These are dielectrics with high relative permittivity and low loss tangent. The Ansoft HFSS, commercial program employee, using the finite element method, and was used for analysis of antennas studied in this work
Resumo:
Considering the constant evolution of technology in growth and the need for production techniques in the ceramics area to move forward together, we sought in this study, the research and development of polymeric precursor method to obtain inorganic ceramic pigments. Method that provides quality to obtain the precursor powders of oxides and pigments at the same time, offers time and cost advantages, such as reproducibility, purity and low temperature heat treatment, control of stoichiometry. This work used chromium nitrate and iron nitrate as precursors. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through precalcination, breakdown, thermal treatments at different temperatures of calcination (700 to 1100 oC), resulting in pigments: green for chromium oxide deposited on TiO2 (CrTiO3) and orange for iron oxide deposited on TiO2 ( FeTiO3). Noticing an increase of opacity with increasing temperature. Were performed thermal analysis (TG and ATD) in order to evaluate its thermodecomposition. The powders were also characterized by techniques such as XRD, revealing the formation of crystalline phases such as iron titanate (FeTiO3) and chrome titanate (CrTiO3), SEM, demonstrating formation of rounded particles for both oxides and Spectroscopy in the UV-Visible Region, verifying the potential variation and chromaticity os pigments. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials
Resumo:
This letter reports microwave dielectric measurements performed in the antiferroelectric phase of NaNbO3 ceramics from 100 to 450 K. Remarkable dielectric relaxation was found within the antiferroelectric phase and in the vicinity of the ferroelectric-antiferroelectric phase transition. Such dielectric relaxation process was associated with relaxations of polar nanoregions with strong relaxor-like characteristic. In addition, the microwave dielectric measurements also revealed an unexpected and unusual anomaly in the relaxation strength, which was related to a disruption of the antiferroelectric order induced by a possible AFE-AFE phase transition. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
After sintering advanced ceramics, there are invariably distortions, caused in large part by the heterogeneous distribution of density gradients along the compacted piece. To correct distortions, machining is generally used to manufacture pieces within dimensional and geometric tolerances. Hence, narrow material removal limit conditions are applied, which minimize the generation of damage. Another alternative is machining the compacted piece before sintering, called the green ceramic stage, which allows machining without damage to mechanical strength. Since the greatest concentration of density gradients is located in the outer-most layers of the compacted piece, this study investigated the removal of different allowance values by means of green machining. The output variables are distortion after sintering, tool wear, cutting force, and the surface roughness of the green ceramics and the sintered ones. The following results have been noted: less distortion is verified in the sintered piece after 1mm allowance removal; and the higher the tool wear the worse the surface roughness of both green and sintered pieces.
Resumo:
Several researches have been developed in order to verify the porosity effect over the ceramic material properties. The starch consolidation casting (SCC) allows to obtain porous ceramics by using starch as a binder and pore forming element. This work is intended to describe the porous mathematical behavior and the mechanical resistance at different commercial starch concentration. Ceramic samples were made with alumina and potato and corn starches. The slips were prepared with 10 to 50 wt% of starch. The specimens were characterized by apparent density measurements and three-point flexural test associated to Weibull statistics. Results indicated that the porosity showed a first-order exponential equation e(-x/c) increasing in both kinds of starches, so it was confirmed that the alumina ceramic porosity is related to the kind of starch used. The mechanical resistance is represented by a logarithmic expression R = A + B/1+10((Log(x0)-P)C).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bi4-xLaxTi3O12 (BLT) thin films and powders with x ranging from 0 to 0.75 were prepared by the polymeric precursor solution. The effect of lanthanum on the structure of BIT powders was investigated by Rietveld Method. The increase of lanthanum content does not lead to any secondary phases. Orthorhombicity of the bismuth titanate (BIT) crystal lattice decreased with the increase of lanthanum content due the reduction of a/b ratio. The BLT films show piezoelectric coefficients of 45, 19, 16 and 10 pm/V for x = 0, 0.25, 0.50 and 0.75, respectively. The piezoelectric response is strongly reduced by the amount of lanthanum added to the system. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Porosity in starch consolidation casting technique is rightly related to original size and morphology of starch granules, leaving a pore structure after burning out. This work reports the results for the addition of different native potato and corn starch proportions in suspension,; with TiO(2) (rutile) powder. Gelling temperature have been defined after observation under light microscopy using a heating stage. Analysis of porous network and isolated pores have been clone from images of samples surfaces obtained by depth from focus reconstruction, revealing a qualitative correlation of pores characteristics and starches additions in suspensions, suggesting that the presence of isolated or interconnected pores can be handled by starches selection to control the amylopectin and amylose contents in slurries. Also, the analysis of porous fraction distribution shows no consistent pattern through specimens' volume according to starches in mixtures.
Resumo:
The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Composite made of Lead Zirconate Titranate (PZT) ceramic powder and castor oil based polyurethane (PU) were prepared in the thin film form with 0-3 connectivity by spin coating. The composite films were obtained in the thickness range of 100 mum to 300 mum using 33-vol.% of ceramic. The samples mechanical resistance. The material was characterised by dielectric spectroscopy, thermally stimulated discharge current (TSDC), hysteresis measurements and laser-intensity-modulation method (LIMM). The pyroelectric coefficient at 343 K was 7x10(-5) C.m(-2) K-1 for the sample poled with 10 MV/m at 373 K for Ih. The results show that this new composite can be used as suitable piezo and pyroelectric sensors.
Resumo:
Recently, the observation of a new monoclinic phase in the PbZr1-xTixO3 (PZT) system in the vicinity of the morphotropic phase boundary was reported. Investigations of this new phase were reported using different techniques such as high-resolution synchrotron x-ray powder diffraction and Raman spectroscopy. In this work, the monoclinic --> tetragonal phase transition in PbZr0.50Ti0.50O3 ceramics was studied using infrared spectroscopy between 1000 and 400 cm(-1). The four possible nu(1)-stretching modes (Ti-O and Zr-O stretch) in the BO6 octahedron in the ABO(3) structure of PZT in this region were monitored as a function of temperature. The lower-frequency mode nu(1)-(Zr-O) remains practically unaltered, while both intermediate nu(1)-(Ti-O) modes decrease linearly as temperature increases from 89 to 263 K. In contrast, the higher-frequency nu(1)-(Ti-O) and nu(1)-(Zr-O) modes present anomalous behaviour around 178 K. The singularity observed at this mode was associated with the monoclinic --> tetragonal phase transition in PbZr0.50Ti0.50O3 ceramics.