507 resultados para TEOREMA DE PITAGORAS
Resumo:
In questo lavoro studiamo le funzioni armoniche e le loro proprietà: le formule di media, il principio del massimo e del minimo (forte e debole), la disuguaglianza di Harnack e il teorema di Louiville. Successivamente scriviamo la prima e la seconda identità di Green, che permettono di ottenere esplicitamente la soluzione fondamentale dell’equazione di Laplace, tramite il calcolo delle soluzioni radiali del Laplaciano. Introduciamo poi la funzione di Green, da cui si ottiene una formula di rappresentazione per le funzioni armoniche. Se il dominio di riferimento è una palla, la funzione di Green può essere determinata esplicitamente, e ciò conduce alla rappresentazione integrale di Poisson per le funzioni armoniche in una palla.
Resumo:
Si studiano le funzioni assolutamente continue (proprietà, caratterizzazioni ed esempi) e le funzioni a variazione limitata (prima di queste, qualche breve richiamo sulle funzioni monotone e sulla funzione di Vitali).
Resumo:
Gli spazi di Teichmuller nacquero come risposta ad un problema posto diversi anni prima da Bernhard Riemann, che si domandò in che modo poter parametrizzare le strutture complesse supportate da una superficie fissata; in questo lavoro di tesi ci proponiamo di studiarli in maniera approfondita. Una superficie connessa, orientata e dotata di struttura complessa, prende il nome di superficie di Riemann e costituisce l’oggetto principe su cui si basa l’intero studio affrontato nelle pagine a seguire. Il teorema di uniformizzazione per le superfici di Riemann permette di fare prima distinzione netta tra esse, classificandole in superfici ellittiche, piatte o iperboliche. Due superfici di Riemann R ed S si dicono equivalenti se esiste un biolomorfismo f da R in S, e si dice che hanno la stessa struttura complessa. Certamente se le due superfici hanno genere diverso non possono essere equivalenti. Tuttavia, se R ed S sono superfci con lo stesso genere g ma non equivalenti, è comunque possibile dotare R di una struttura complessa, diversa dalla precedente, che la renda equivalente ad S. Questo permette di osservare che R è in grado di supportare diverse strutture complesse non equivalenti tra loro. Lo spazio di Teichmuller Tg di R è definito come lo spazio che parametrizza tutte le strutture complesse su R a meno di biolomorfismo. D’altra parte ogni superficie connessa, compatta e orientata di genere maggiore o uguale a 2 è in grado di supportare una struttura iperbolica. Il collegamento tra il mondo delle superfici di Riemann con quello delle superfici iperboliche è stato dato da Gauss, il quale provò che per ogni fissata superficie R le metriche iperboliche sono in corrispondenza biunivoca con le strutture complesse supportate da R stessa. Questo teorema permette di fornire una versione della definizione di Tg per superfici iperboliche; precisamente due metriche h1, h2 su R sono equivalenti se e soltanto se esiste un’isometria φ : (R, h1 ) −→ (R, h2 ) isotopa all’identità. Pertanto, grazie al risultato di Gauss, gli spazi di Teichmuller possono essere studiati sia dal punto di vista complesso, che da quello iperbolico.
Resumo:
In questa tesi si descrive il gruppo dei quaternioni come gruppo non abeliano avente tutti i sottogruppi normali. In particolare si dimostra il teorema di Dedekind che determina la struttura dei gruppi aventi tutti i sottogruppi normali. Si dà poi un polinomio a coefficienti razionali il cui gruppo di Galois coincide con il gruppo dei quaternioni.
Resumo:
In questa tesi si è data una dimostrazione dovuta ad Andreotti e Frenkel del Teorema di Lefschetz, utilizzando gli strumenti e i risultati della Teoria di Morse.
Resumo:
L’assioma di scelta ha una preistoria, che riguarda l’uso inconsapevole e i primi barlumi di consapevolezza che si trattasse di un nuovo principio di ragionamento. Lo scopo della prima parte di questa tesi è quello di ricostruire questo percorso di usi più o meno impliciti e più o meno necessari che rivelarono la consapevolezza non solo del fatto che fosse indispensabile introdurre un nuovo principio, ma anche che il modo di “fare matematica” stava cambiando. Nei capitoli 2 e 3, si parla dei moltissimi matematici che, senza rendersene conto, utilizzarono l’assioma di scelta nei loro lavori; tra questi anche Cantor che appellandosi alla banalità delle dimostrazioni, evitava spesso di chiarire le situazioni in cui era richiesta questa particolare assunzione. Il capitolo 2 è dedicato ad un caso notevole e rilevante dell’uso inconsapevole dell’Assioma, di cui per la prima volta si accorse R. Bettazzi nel 1892: l’equivalenza delle due nozioni di finito, quella di Dedekind e quella “naturale”. La prima parte di questa tesi si conclude con la dimostrazione di Zermelo del teorema del buon ordinamento e con un’analisi della sua assiomatizzazione della teoria degli insiemi. La seconda parte si apre con il capitolo 5 in cui si parla dell’intenso dibattito sulla dimostrazione di Zermelo e sulla possibilità o meno di accettare il suo Assioma, che coinvolse i matematici di tutta Europa. In quel contesto l’assioma di scelta trovò per lo più oppositori che si appellavano ad alcune sue conseguenze apparentemente paradossali. Queste conseguenze, insieme alle molte importanti, sono analizzate nel capitolo 6. Nell’ultimo capitolo vengono riportate alcune tra le molte equivalenze dell’assioma di scelta con altri enunciati importanti come quello della tricotomia dei cardinali. Ci si sofferma poi sulle conseguenze dell’Assioma e sulla sua influenza sulla matematica del Novecento, quindi sulle formulazioni alternative o su quelle più deboli come l’assioma delle scelte dipendenti e quello delle scelte numerabili. Si conclude con gli importanti risultati, dovuti a Godel e a Cohen sull’indipendenza e sulla consistenza dell’assioma di scelta nell’ambito della teoria degli insiemi di Zermelo-Fraenkel.
Resumo:
In questa tesi si mostra che la caratteristica di Eulero e l'orientabilità (o non orientabilità) sono invarianti topologici per le superfici compatte e si studia il teorema di classificazione per tali superfici.
Resumo:
Lo scopo di questa tesi è lo studio della risolubilità per radicali di equazioni polinomiali nel caso in cui il campo dei coefficienti del polinomio abbia caratteristica zero. Nel primo capitolo vengono richiamati i principali risultati riguardanti la teoria di Galois. Nel secondo capitolo si introducono le nozioni di gruppo risolubile e gruppo semplice analizzandone le proprietà. Nel terzo capitolo si definiscono le estensioni di campi radicali e risolubili. Viene inoltre dimostrato il teorema di Galois che mette in evidenza il legame tra gruppi risolubili ed estensioni risolubili. Infine, nell'ultimo capitolo, si applicano i risultati ottenuti al problema della risolubilità per radicali delle equazioni polinomiali dando anche diversi esempi. In particolare viene analizzato il caso del polinomio universale di grado n.
Resumo:
Questo elaborato si propone di analizzare il collegamento tra olomorfia e armonicità. La prima parte della tesi tratta le funzioni olomorfe, mentre la seconda parte tratta le funzioni armoniche. Per quanto riguarda la seconda parte, inizialmente ci limiteremo a studiare le funzioni armoniche in R^2, sottolineando il legame tra queste e le funzioni olomorfe. Considereremo poi il caso generale, ovvero estenderemo la nozione di funzione armonica ad R^N e osserveremo che molte delle proprietà viste per le funzioni olomorfe valgono anche per le funzioni armoniche. In particolare, vedremo che le formule di media per le funzioni armoniche svolgono un ruolo analogo alla formula integrale di Cauchy per le funzioni olomorfe. Vedremo anche che il Teorema di Liouville per le funzioni armoniche è l’analogo del Teorema di Liouville per le funzioni intere (funzioni olomorfe su tutto C) e, infine, osserveremo che il Principio del massimo forte non è altro che il trasferimento alle funzioni armoniche del Principio del massimo modulo visto nella teoria delle funzioni olomorfe.
Resumo:
Si dimostra che una classe di trasformazioni espandenti a tratti sull'intervallo unitario soddisfa le ipotesi di un teorema di analisi funzionale contenuto nell'articolo "Rare Events, Escape Rates and Quasistationarity: Some Exact Formulae" di G. Keller e C. Liverani. Si considera un sistema dinamico aperto, con buco di misura epsilon. Se al diminuire di epsilon i buchi costituiscono una famiglia decrescente di sottointervalli di I, e per epsilon che tende a zero essi tendono a un buco formato da un solo punto, allora il teorema precedente consente di dimostrare la differenziabilità del tasso di fuga del sistema aperto, visto come funzione della dimensione del buco. In particolare, si ricava una formula esplicita per l'espansione al prim'ordine del tasso di fuga .
Resumo:
Studio degli insiemi algebrici e delle varietà affini: proprietà, frecce e risultati, tra cui il teorema degli zeri di Hilbert.
Resumo:
La sezione d’urto totale adronica gioca un ruolo fondamentale nel programma di fisica di LHC. Un calcolo di questo parametro, fondamentale nell’ambito della teoria delle interazioni forti, non é possibile a causa dell’inapplicabilità dell’approccio perturbativo. Nonostante ciò, la sezione d’urto può essere stimata, o quanto meno le può essere dato un limite, grazie ad un certo numero di relazioni, come ad esempio il Teorema Ottico. In questo contesto, il detector ALFA (An Absolute Luminosity For ATLAS) sfrutta il Teorema Ottico per determinare la sezione d’urto totale misurando il rate di eventi elastici nella direzione forward. Un tale approccio richiede un metodo accurato di misura della luminosità in condizioni sperimentali difficoltose, caratterizzate da valori di luminosità istantanea inferiore fino a 7 ordini di grandezza rispetto alle normali condizioni di LHC. Lo scopo di questa tesi è la determinazione della luminosità integrata di due run ad alto β*, utilizzando diversi algoritmi di tipo Event-Counting dei detector BCM e LUCID. Particolare attenzione è stata riservata alla sottrazione del fondo e allo studio delle in- certezze sistematiche. I valori di luminosità integrata ottenuti sono L = 498.55 ± 0.31 (stat) ± 16.23 (sys) μb^(-1) and L = 21.93 ± 0.07 (stat) ± 0.79 (sys) μb^(-1), rispettivamente per i due run. Tali saranno forniti alla comunità di fisica che si occupa della misura delle sezioni d’urto protone-protone, elastica e totale. Nel Run II di LHC, la sezione d’urto totale protone-protone sarà stimata con un’energia nel centro di massa di 13 TeV per capire meglio la sua dipendenza dall’energia in un simile regime. Gli strumenti utilizzati e l’esperienza acquisita in questa tesi saranno fondamentali per questo scopo.
Resumo:
Enunciati indipendenti dagli assiomi dell'aritmetica di Peano; è rivolta particolare attenzione all'indipendenza del teorema di Goodstein.
Resumo:
Questo elaborato presenta gli elementi di base della Teoria degli Spazi di Hilbert, con particolare attenzione al Teorema della Proiezione sui convessi e ai sistemi ortonormali completi.
Resumo:
Il teorema di Chevalley-Shephard-Todd è un importante risultato del 1954/1955 nella teoria degli invarianti polinomiali sotto l'azione del gruppo delle matrici invertibili. Lo scopo di questa tesi è presentare e dimostrare il teorema nella versione in cui l'anello dei polinomi ha come campo base R e di vedere alcuni esempi concreti di applicazione del teorema. Questa dimostrazione può essere generalizzata facilmente avendo come campo base un qualsiasi campo K di caratteristica 0.