887 resultados para Support Vector machines
Resumo:
The automatic characterization of particles in metallographic images has been paramount, mainly because of the importance of quantifying such microstructures in order to assess the mechanical properties of materials common used in industry. This automated characterization may avoid problems related with fatigue and possible measurement errors. In this paper, computer techniques are used and assessed towards the accomplishment of this crucial industrial goal in an efficient and robust manner. Hence, the use of the most actively pursued machine learning classification techniques. In particularity, Support Vector Machine, Bayesian and Optimum-Path Forest based classifiers, and also the Otsu's method, which is commonly used in computer imaging to binarize automatically simply images and used here to demonstrated the need for more complex methods, are evaluated in the characterization of graphite particles in metallographic images. The statistical based analysis performed confirmed that these computer techniques are efficient solutions to accomplish the aimed characterization. Additionally, the Optimum-Path Forest based classifier demonstrated an overall superior performance, both in terms of accuracy and speed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Classificação de tábuas de madeira usando processamento de imagens digitais e aprendizado de máquina
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Prostate cancer is a serious public health problem accounting for up to 30% of clinical tumors in men. The diagnosis of this disease is made with clinical, laboratorial and radiological exams, which may indicate the need for transrectal biopsy. Prostate biopsies are discerningly evaluated by pathologists in an attempt to determine the most appropriate conduct. This paper presents a set of techniques for identifying and quantifying regions of interest in prostatic images. Analyses were performed using multi-scale lacunarity and distinct classification methods: decision tree, support vector machine and polynomial classifier. The performance evaluation measures were based on area under the receiver operating characteristic curve (AUC). The most appropriate region for distinguishing the different tissues (normal, hyperplastic and neoplasic) was defined: the corresponding lacunarity values and a rule's model were obtained considering combinations commonly explored by specialists in clinical practice. The best discriminative values (AUC) were 0.906, 0.891 and 0.859 between neoplasic versus normal, neoplasic versus hyperplastic and hyperplastic versus normal groups, respectively. The proposed protocol offers the advantage of making the findings comprehensible to pathologists. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of mobile robots in the agriculture turns out to be interesting in tasks of cultivation and application of pesticides in minute quantities to reduce environmental pollution. In this paper we present the development of a system to control an autonomous mobile robot navigation through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features, and then submitting such characteristic features to a support vector machine to find out the most appropriate route. As the overall goal of the project to which this work is connected is the robot control in real time, the system will be embedded onto a hardware platform. However, in this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route.
Resumo:
This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.
Automatic method to classify images based on multiscale fractal descriptors and paraconsistent logic
Resumo:
In this study is presented an automatic method to classify images from fractal descriptors as decision rules, such as multiscale fractal dimension and lacunarity. The proposed methodology was divided in three steps: quantification of the regions of interest with fractal dimension and lacunarity, techniques under a multiscale approach; definition of reference patterns, which are the limits of each studied group; and, classification of each group, considering the combination of the reference patterns with signals maximization (an approach commonly considered in paraconsistent logic). The proposed method was used to classify histological prostatic images, aiming the diagnostic of prostate cancer. The accuracy levels were important, overcoming those obtained with Support Vector Machine (SVM) and Bestfirst Decicion Tree (BFTree) classifiers. The proposed approach allows recognize and classify patterns, offering the advantage of giving comprehensive results to the specialists.
Resumo:
Non-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.
Resumo:
The reproductive performance of cattle may be influenced by several factors, but mineral imbalances are crucial in terms of direct effects on reproduction. Several studies have shown that elements such as calcium, copper, iron, magnesium, selenium, and zinc are essential for reproduction and can prevent oxidative stress. However, toxic elements such as lead, nickel, and arsenic can have adverse effects on reproduction. In this paper, we applied a simple and fast method of multi-element analysis to bovine semen samples from Zebu and European classes used in reproduction programs and artificial insemination. Samples were analyzed by inductively coupled plasma spectrometry (ICP-MS) using aqueous medium calibration and the samples were diluted in a proportion of 1:50 in a solution containing 0.01% (vol/vol) Triton X-100 and 0.5% (vol/vol) nitric acid. Rhodium, iridium, and yttrium were used as the internal standards for ICP-MS analysis. To develop a reliable method of tracing the class of bovine semen, we used data mining techniques that make it possible to classify unknown samples after checking the differentiation of known-class samples. Based on the determination of 15 elements in 41 samples of bovine semen, 3 machine-learning tools for classification were applied to determine cattle class. Our results demonstrate the potential of support vector machine (SVM), multilayer perceptron (MLP), and random forest (RF) chemometric tools to identify cattle class. Moreover, the selection tools made it possible to reduce the number of chemical elements needed from 15 to just 8.
Resumo:
Multi-element analysis of honey samples was carried out with the aim of developing a reliable method of tracing the origin of honey. Forty-two chemical elements were determined (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, P, La, Mg, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr) by inductively coupled plasma mass spectrometry (ICP-MS). Then, three machine learning tools for classification and two for attribute selection were applied in order to prove that it is possible to use data mining tools to find the region where honey originated. Our results clearly demonstrate the potential of Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Random Forest (RF) chemometric tools for honey origin identification. Moreover, the selection tools allowed a reduction from 42 trace element concentrations to only 5. (C) 2012 Elsevier Ltd. All rights reserved.