991 resultados para Sugar beet industry
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas Ambientais
Resumo:
AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolise several related secondary metabolites requires regulation at the genetic level. Here, by site- directed mutagenesis, we show that AraL production is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of HAD subfamily IIA and IIB are characterised by a broad-range and overlapping specificity that anticipated the need for regulation at the genetic level. In this study we provide evidence for the existence of a genetic regulatory mechanism controlling AraL production.
Resumo:
The purpose of this paper is to conduct a methodical drawback analysis of a financial supplier risk management approach which is currently implemented in the automotive industry. Based on identified methodical flaws, the risk assessment model is further developed by introducing a malus system which incorporates hidden risks into the model and by revising the derivation of the most central risk measure in the current model. Both methodical changes lead to significant enhancements in terms of risk assessment accuracy, supplier identification and workload efficiency.
Resumo:
Logoplaste is a specialist in operating in-house industrial sites for manufacturing rigid plastic packaging containers. In developing countries, especially in Africa, the low income of consumers does not allow a widespread adoption of products typically sold in rigid plastic containers. In these countries the flexible packages are usually adopted as they allow for better ratios of cost/litter of product, particularly in smaller packages. Should Logoplaste offer this type of technology in order to expand into developing countries?
Resumo:
Based on the report for the course on “Social Factors of Innovation” of the PhD Program on Technology Assessment, supervised by Prof. António Brandão Moniz, Monte de Caparica, University NOVA Lisbon, Faculty of Sciences and Technology, July 2013
Resumo:
The evolution of mobile technologies that make its presence something ubiquitous and the idea of internet connectivity in every device, often called as the Internet of Things, are pushing a disruption in other industry: the in-vehicle infotainment (IVI). Many companies are trying to enter this new industry that comprises information (weather, news, location services) and entertainment solutions in just one. For that purpose, company X developed a new entertainment solution and intends to bring it to market. This Work Project focuses on creating a business model and an entry mode for the company.
Resumo:
This dissertation studies essentially how Millennials are changing the hotel industry, in the sense that new trends are emerging with this generation and hotels need to respond accordingly, in order to survive within their competitive industry. Emphasis is also given to Asian travellers, as the enlargement of these countries’ middle class populations is predicted, therefore making Asian travellers a valuable target for the hotel industry. To successfully target this segment, hoteliers need also to consider the cultural differences and aspirations that come together with the Asian travellers, and appropriately adapt their offer to them. I will then redirect this study to the city of Lisbon, the Portuguese capital, to analyse if Lisbon’s four and five-star hotel managers are aware of the new market trends, and to understand how they are changing their hotels in order to make them more attractive to Millennials and Asian travellers. Using a sample of 12 hotels (four and five-stars ratings), I have concluded that, although there is a notable undergoing process of adaptation to these guests, there is a long way ahead in order for Lisbon’s hotels to entirely please and retain millennial guests.
Resumo:
This work project develops a case-study to be used in Negotiation courses, both in Masters programs and in executive education workshops. The case-study is based on a real-life negotiating situation in Belgium between Unilever, the second largest Fast Moving Consumer Goods (FMCG) company in the world, and Delhaize, one of the most important Belgium’s retailers, with a significant international presence. We also present an analysis of the negotiation based on relevant literature. First, a brief literature review is presented about how to deal with multiple-issue negotiations and how to deal with processes of escalation of conflict. These concepts are then applied to the analysis of the case-study.
Resumo:
The Portuguese consumer foodservice industry is experiencing a boost in technology adoption, driven by significant changes in consumer behavior and business dynamics, due to mobile increasing penetration. Accordingly, the present work project consists on developing a business plan for meeting an identified opportunity in the technological foodservice landscape. Therefore, this report is divided into three sections, each of which addressing different objectives: (A) External Environment, providing key external insights that support the opportunity; (B) Strategy Formulation, establishing a strategic direction; and (C) Action Plan, determining an implementation plan for starting the business
Resumo:
Companies in the Extractive Industry (E.I) have some particularities and special regulation that provides an interesting study of inventory and reporting in their financial statements. The theme thus chosen here, aims to make a comparison of the various methods of reporting inventories (recognition, measurement, presentation and disclosures) as well as the different accounting regulations in place. Moreover, inventories are a current asset which represents a large per cent of total assets. Another is that it also provides an opportunity for analysis of the different regulations in place for disclosures; the different standards implemented- IAS, US GAAP and/or regional standards.
Resumo:
Succinic acid (SA) is a highly versatile building block that is used in a wide range of industrial applications. The biological production of succinic acid has emerged in the last years as an efficient alternative to the chemical production based on fossil fuels. However, in order to fully replace the competing petro-based chemical process from which it has been produced so far, some challenges remain to be surpassed. In particular, one main obstacle would be to reduce its production costs, mostly associated to the use of refined sugars. The present work is focused on the development of a sustainable and cost-e↵ective microbial production process based on cheap and renewable resources, such as agroindustrial wastes. Hence, glycerol and carob pods were identified as promising feedstocks and used as inexpensive carbon sources for the bioproduction of succinic acid by Actinobacillus succinogenes 130Z, one of the best naturally producing strains. Even though glycerol is a highly available carbon source, as by-product of biodiesel production, its consumption by A. succinogenes is impaired due to a redox imbalance during cell growth. However, the use of an external electron acceptor such as dimethylsulfoxide (DMSO) may improve glycerol metabolism and succinic acid production by this strain. As such, DMSO was tested as a co-substrate for glycerol consumption and concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by this biocatalyst. Aiming at obtaining higher succinic acid yield and production rate, batch and fed-batch experiments were performed under controlled cultivation conditions. Batch experiments resulted in a succinic acid yield on glycerol of 0.95 g SA/g GLY and a production rate of 2.13 g/L.h, with residual production of acetic and formic acids. In fed-batch experiment, the SA production rate reached 2.31 g/L.h, the highest value reported in the literature for A. succinogenes using glycerol as carbon source. DMSO dramatically improved the conversion of glycerol by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Carob pods, highly available in Portugal as a residue from the locust bean gum industry, contain a significant amount of fermentable sugars such as sucrose, glucose and fructose and were also used as substrate for succinic acid production. Sugar extraction from raw and roasted carobs was optimized varying solid/water ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Kinetic studies of glucose, fructose and sucrose consumption by A. succinogenes as individual carbon sources till 30 g/L were first determined to assess possible metabolic diferences. Results showed no significant diferences related to sugar consumption and SA production between the diferent sugars. Carob pods water extracts were then used as carbon source during controlled batch cultivations. (...)
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.