999 resultados para Residues construction
Resumo:
Identifying the design features that impact construction is essential to developing cost effective and constructible designs. The similarity of building components is a critical design feature that affects method selection, productivity, and ultimately construction cost and schedule performance. However, there is limited understanding of what constitutes similarity in the design of building components and limited computer-based support to identify this feature in a building product model. This paper contributes a feature-based framework for representing and reasoning about component similarity that builds on ontological modelling, model-based reasoning and cluster analysis techniques. It describes the ontology we developed to characterize component similarity in terms of the component attributes, the direction, and the degree of variation. It also describes the generic reasoning process we formalized to identify component similarity in a standard product model based on practitioners' varied preferences. The generic reasoning process evaluates the geometric, topological, and symbolic similarities between components, creates groupings of similar components, and quantifies the degree of similarity. We implemented this reasoning process in a prototype cost estimating application, which creates and maintains cost estimates based on a building product model. Validation studies of the prototype system provide evidence that the framework is general and enables a more accurate and efficient cost estimating process.
Resumo:
In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.
Resumo:
Accelerating a project can be rewarding. The consequences, however, can be troublesome if productivity and quality are sacrificed for the sake of remaining ahead of schedule, such that the actual schedule benefits are often barely worth the effort. The tradeoffs and paths of schedule pressure and its causes and effects are often overlooked when schedule decisions are being made. This paper analyses the effects that schedule pressure has on construction performance, and focuses on tradeoffs in scheduling. A research framework has been developed using a causal diagram to illustrate the cause-and-effect analysis of schedule pressure. An empirical investigation has been performed by using survey data collected from 102 construction practitioners working in 38 construction sites in Singapore. The results of this survey data analysis indicate that advantages of increasing the pace of work—by working under schedule pressure—can be offset by losses in productivity and quality. The negative effects of schedule pressure arise mainly by working out of sequence, generating work defects, cutting corners, and losing the motivation to work. The adverse effects of schedule pressure can be minimized by scheduling construction activities realistically and planning them proactively, motivating workers, and by establishing an effective project coordination and communication mechanism.
Resumo:
Previous research on construction innovation has commonly recognized the importance of the organizational climate and key individuals, often called “champions,” for the success of innovation. However, it rarely focuses on the role of participants at the project level and addresses the dynamics of construction innovation. This paper therefore presents a dynamic innovation model that has been developed using the concept of system dynamics. The model incorporates the influence of several individual and situational factors and highlights two critical elements that drive construction innovations: (1) normative pressure created by project managers through their championing behavior, and (2) instrumental motivation of team members facilitated by a supportive organizational climate. The model is qualified empirically, using the results of a survey of project managers and their project team members working for general contractors in Singapore, by assessing casual relationships for key model variables. Finally, the paper discusses the implications of the model structure for fostering construction innovations.
Resumo:
Downtime (DT) caused by non-availability of equipment and equipment breakdown has non-trivial impact on the performance of construction projects. Earlier research has often addressed this fact, but it has rarely explained the causes and consequences of DT – especially in the context of developing countries. This paper presents a DT model to address this issue. Using this model, the generic factors and processes related to DT are identified, and the impact of DT is quantified. By applying the model framework to nine road projects in Nepal, the impact of DT is explored in terms of its duration and cost. The research findings highlight how various factors and processes interact with each other to create DT, and mitigate or exacerbate its impact on project performance. It is suggested that construction companies need to adopt proactive equipment management and maintenance programs to minimize the impact of DT.
Resumo:
This article analyses the inconsistent approaches taken by courts when interpreting provisions of the Corporations Act which address debts or expenses “incurred” by receivers, administrators and liquidators. The article contends for a consistent construction of these provisions which will enable the legislation to operate (as was intended) for the benefit of persons who supply goods, services or labour to companies in external administration. The article explains how and why debts can be “incurred” by insolvency practitioners continuing on pre-existing contracts. Specifically, the article contends for a construction of ss 419 and 443A of the Corporations Act which renders receivers and administrators personally liable for certain entitlements of employees (eg, wages and superannuation contributions) which become due and payable by reason of the decision of a receiver or administrator to continue a pre-existing contract rather than terminate it.
Resumo:
Purpose – The purpose of this paper is to provide a new type of entry mode decision-making model for construction enterprises involved in international business. Design/methodology/approach – A hybrid method combining analytic hierarchy process (AHP) with preference ranking organization method for enrichment evaluations (PROMETHEE) is used to aid entry mode decisions. The AHP is used to decompose the entry mode problem into several dimensions and determine the weight of each criterion. In addition, PROMETHEE method is used to rank candidate entry modes and carry out sensitivity analyses. Findings – The proposed decision-making method is demonstrated to be a suitable approach to resolve the entry mode selection decision problem. Practical implications – The research provides practitioners with a more systematic decision framework and a more precise decision method. Originality/value – The paper sheds light on the further development of entry strategies for international construction markets. It not only introduces a new decision-making model for entry mode decision making, but also provides a conceptual framework with five determinants for a construction company entry mode selection based on the unique properties of the construction industry.
Resumo:
This investigation has shown that by transforming free caustic in red mud (RM) to Bayer hydrotalcite (during the seawater neutralization (SWN) process) enables a more controlled release mechanism for the neutralization of acid sulfate soils. The formation of hydrotalcite has been confirmed by X-ray diffraction (XRD) and differential thermalgravimetric analysis (DTG), while the dissolution of hydrotalcite and sodalite has been observed through XRD, DTG, pH plots, and ICP-OES. Coupling of all techniques enabled three neutralization mechanisms to be determined: (1) free alkali, (2) hydrotalcite dissolution, and (3) sodalite dissolution. The mechanisms are determined on the basis of ICP-OES and kinetic information. When the mass of RM or SWN-RM is greater than 0.08 g/50 mL, the pH of solution increases to a suitable value for plant life with aluminum leaching kept at a minimum. To obtain a neutralization pH greater than 6 in 10 min, the following ratio of bauxite residue (g) in 50 mL with a known iron sulfate (Fe2(SO4)3) concentration can be determined as follows: 0.04 g:50 mL:0.1 g/L of Fe2(SO4)3.
Resumo:
In the absence of a benchmarking mechanism specifically designed for local requirements and characteristics, a carbon dioxide footprint assessment and labelling scheme for construction materials is urgently needed to promote carbon dioxide reduction in the construction industry. This paper reports on a recent interview survey of 18 senior industry practitioners in Hong Kong to elicit their knowledge and opinions concerning the potential of such a carbon dioxide labelling scheme. The results of this research indicate the following. A well-designed carbon dioxide label could stimulate demand for low carbon dioxide construction materials. The assessment of carbon dioxide emissions should be extended to different stages of material lifecycles. The benchmarks for low carbon dioxide construction materials should be based on international standards but without sacrificing local integrity. Administration and monitoring of the carbon dioxide labelling scheme could be entrusted to an impartial and independent certification body. The implementation of any carbon dioxide labelling schemes should be on a voluntary basis. Cost, functionality, quality and durability are unlikely to be replaced by environmental considerations in the absence of any compelling incentives or penalties. There are difficulties in developing and operating a suitable scheme, particularly in view of the large data demands involved, reluctance in using low carbon dioxide materials and limited environmental awareness.
Resumo:
Contractors have to bid competitively for most of their work and at the same time deal with the risks and uncertainties connected with bid submission. This article examines the factors involved in tender pricing and how they interrelate. From this, a conceptual model of contractors’ pricing strategy is developed.
Resumo:
Knowledge Management (KM) is a process that focuses on knowledge-related activities to facilitate knowledge creation, capture, transformation and use, with the ultimate aim of leveraging organisations’ intellectual capital to achieve organisational objectives. Organisational culture and climate have been identified as major catalysts to knowledge creation and sharing, and hence are considered important dimensions of KM research. The fragmented and hierarchical nature of the construction industry illustrates its difficulties to operate in a co-ordinated and homogeneous way when dealing with knowledge-related issues such as research and development, training and innovation. The culture and climate of organisations operating within the construction industry are profoundly shaped by the long-established characteristics of the industry, whilst also being influenced by the changes within the sector. Meanwhile, the special project-based structure of construction organisations constitutes additional challenges in facing knowledge production. The study this paper reports on addresses the impact of organisational culture and climate on the intensity of KM activities within construction organisations, with specific focus on the managerial activities that help to manage these challenges and to facilitate KM. A series of semi-structured interviews were undertaken to investigate the KM activities of the contractors operating in Hong Kong. The analysis on the qualitative data revealed that leadership on KM, innovation management, communication management and IT development were key factors that impact positively on the KM activities within the organisations under investigation.
Resumo:
Since the movement for economic reform started in China 20 years ago, the nation's GDP had grown on average from seven to nine per cent a year, making China's construction industry one of the largest in the world. This paper presents an overview of China's foreign economic cooperation development (FECD) in the context of exporting three major construction services namely; contracting, labour and design. The paper outlines the export market profile of Chinese contractors and discusses their current position in the international market. It then addresses challenges; they are facing in view of meeting the ambitious strategic targets set out by the Government for the FECD, which cover the export of construction services. Finally, the paper sheds some light on key exporting strategies currently adopted by Chinese contractors.
Resumo:
Knowledge management (KM) provides a structured process to establish the link between knowledgebased assets within an organisation and its desired business objectives. Although KM issues are becoming increasingly important to the construction industry, there is currently no measurement tool for assessing the implementation of KM programmes. This paper reports on the development of such a tool which can be used as both a means of self-assessment and also for benchmarking purposes. Important practices needed for successful KM implementation were identified from the literature and via a self-administered survey targeting large and medium construction organisations in Hong Kong. Survey findings demonstrate the potential of the proposed self-assessment tool to measure the individual’s perception of the relative importance of KM antecedents and practices, also providing early insight of KM implementation by highlighting the negative gaps between what “is” and “should be” happening, thus identifying areas that need re alignment of KM strategies and tactics. The paper also suggests this tool could be further developed to help organisations to formulate and modify their KM programmes according to their own specific internal business environment, and the nature of their projects.
Resumo:
In this paper we construct earthwork allocation plans for a linear infrastructure road project. Fuel consumption metrics and an innovative block partitioning and modelling approach are applied to reduce costs. 2D and 3D variants of the problem were compared to see what effect, if any, occurs on solution quality. 3D variants were also considered to see what additional complexities and difficulties occur. The numerical investigation shows a significant improvement and a reduction in fuel consumption as theorised. The proposed solutions differ considerably from plans that were constructed for a distance based metric as commonly used in other approaches. Under certain conditions, 3D problem instances can be solved optimally as 2D problems.