949 resultados para Q. liaotungensis
Resumo:
We discuss the q-state Potts models for q less than or equal to 4, in the scaling regimes close to their critical or tricritical points. Starting from the kink S-matrix elements proposed by Chim and Zamolodchikov, the bootstrap is closed for the scaling regions of all critical points, and for the tricritical points when 4 > q greater than or equal to 2. We also note a curious appearance of the extended last line of Freudenthal's magic square in connection with the Potts models. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The classical and quantum algebras of a class of conformal NA-Toda models are studied. It is shown that the SL(2,R)(q) Poisson brackets algebra generated by certain chiral and antichiral charges of the nonlocal currents and the global U(1) charge appears as an algebra of the symmetries of these models. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
We continue our discussion of the q-state Potts models for q less than or equal to 4, in the scaling regimes close to their critical and tricritical points. In a previous paper, the spectrum and full S-matrix of the models on an infinite line were elucidated; here, we consider finite-size behaviour. TBA equations are proposed for all cases related to phi(21) and phi(12) perturbations of unitary minimal models. These are subjected to a variety of checks in the ultraviolet and infrared limits, and compared with results from a recently-proposed non-linear integral equation. A non-linear integral equation is also used to study the flows from tricritical to critical models, over the full range of q. Our results should also be of relevance to the study of the off-critical dilute A models in regimes 1 and 2. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
A study of the reducibility of the Fock space representation of the q-deformed harmonic oscillator algebra for real and root of unity values of the deformation parameter is carried out by using the properties of the Gauss polynomials. When the deformation parameter is a root of unity, an interesting result comes out in the form of a reducibility scheme for the space representation which is based on the classification of the primitive or nonprimitive character of the deformation parameter. An application is carried out for a q-deformed harmonic oscillator Hamiltonian, to which the reducibility scheme is explicitly applied.
Resumo:
The behavior of the transition pion form factor for processes gamma (*)gamma --> pi(0) and gamma (*)gamma (*) --> pi(0) at large values of space-like photon momenta is estimated within the nonlocal covariant quark-pion model. It is shown that, in general, the coefficient of the leading asymptotic term depends dynamically on the ratio of the constituent quark mass and the average virtuality of quarks in the vacuum and kinematically on the ratio of photon virtualities. The kinematic dependence of the transition form factor allows us to obtain the relation between the pion light-cone distribution amplitude and the quark-pion vertex function. The dynamic dependence indicates that the transition form factor gamma (*)gamma -->, pi(0) at high momentum transfers is very sensitive to the nonlocality size of nonperturbative fluctuations in the QCD vacuum. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Inspired in recent works of Biedenham [1, 2] on the realization of the q-algebra su(q)(2), We show in this note that the condition [2j + 1](q) = N-q(j) = integer, implies the discretization of the deformation parameter alpha, where q = e(alpha). This discretization replaces the continuum associated to ct by an infinite sequence alpha(1), alpha(2), alpha(3),..., obtained for the values of j, which label the irreps of su(q)(2). The algebraic properties of N-q(j) are discussed in some detail, including its role as a trace, which conducts to the Clebsch-Gordan series for the direct product of irreps. The consequences of this process of discretization are discussed and its possible applications are pointed out. Although not a necessary one, the present prescription is valuable due to its algebraic simplicity especially in the regime of appreciable values of alpha.
Resumo:
The QCD Sum Rules have been used to evaluate the form factor in the vertex KK*pi. The method of QCD Sum Rules is based on the duality principle in which it is assumed that the hadrons can simultaneously be described in two levels: quarks and hadrons. This work showed that the, axial current, used to describe the meson K is not appropriated to study the form factor.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Z(4)-linearity is a construction technique of good binary codes. Motivated by this property, we address the problem of extending the Z(4)-linearity to Z(q)n-linearity. In this direction, we consider the n-dimensional Lee space of order q, that is, (Z(q)(n), d(L)), as one of the most interesting spaces for coding applications. We establish the symmetry group of Z(q)(n) for any n and q by determining its isometries. We also show that there is no cyclic subgroup of order q(n) in Gamma(Z(q)(n)) acting transitively in Z(q)(n). Therefore, there exists no Z(q)n-linear code with respect to the cyclic subgroup.
Resumo:
Assuming q-deformed commutation relations for the fermions, an extension of the standard Lipkin Hamiltonian is presented. The usual quasi-spin representation of the standard Lipkin model is also obtained in this q-deformed framework. A variationally obtained energy functional is used to analyse the phase transition associated with the spherical symmetry breaking. The only phase transitions in this q-deformed model are of second order. As an outcome of this analysis a critical parameter is obtained which is dependent on the deformation of the algebra and on the number of particles.
Resumo:
The construction of a q-deformed N = 2 superconformal algebra is proposed in terms of level-1 currents of the U-q(<(su)over cap>(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed energy-momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to U-q(<(su)over cap>(N + 1)) is also proposed.