975 resultados para Problemas matemáticos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tomando como inicio el contexto de la Matemática para su enseñanza, encontramos que existen múltiples relaciones entre ella y diferentes ramas del Arte. El tema que presentamos en este taller es ilimitado. Presentaremos algunos “matemáticos-escritores”, algunos autores del género “Matemática Recreativa” y otros ejemplos de famosos científicos que incursionaron en la Literatura o famosos literatos que incursionaron en la Matemática. En definitiva, se trata de mostrar, brevemente, algunos vínculos entre la Matemática y la Literatura, ya que estos textos pueden utilizarse como disparador para la introducción de nuevos contenidos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta comunicación se analizan dificultades y recursos que tienen los estudiantes para profesores de Educación Primaria y Secundaria al resolver problemas de Matemáticas, que se proponen como tareas y actividades básicas en un plan de formación inicial de Profesores de Matemáticas en la Educación Obligatoria, que facilitan el desarrollo de competencias profesionales útiles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los esquemas lógico-matemáticos desarrollados durante el crecimiento y formación dentro de un sistema educativo podrían influir y marcar cierta evolución sobre los sesgos del pensamiento probabilístico de los estudiantes, aun cuando éstos no reciban instrucción formal en probabilidades. Esta investigación ha sido realizada con 152 estudiantes de nivel medio entre 13 y 17 años. Los objetivos de la misma han sido: (a) identificar y analizar la influencia de esquemas lógico-matemáticos sobre sesgos intuitivos en juicios bajo incerteza cuando no existe conocimiento probabilístico formal y (b) analizar la evolución etaria de estos procesos. La metodología utilizada es mixta. Los instrumentos han sido cuestionarios con preguntas orientadas a la detección de algunos sesgos intuitivos y los esquemas actuantes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo centra su atención en la construcción de saberes matemáticos en un ambiente de colaboración, en el que se privilegia la interacción entre los participantes, la confrontación y la negociación. Se hace una descripción de la problemática que se vive en el aprendizaje de las matemáticas y de la necesidad de innovar a través de situaciones donde el contenido matemático es relevante para el alumno y la sociedad. De igual modo se hace una descripción sucinta acerca de que esta manera de construir saberes incluye el desarrollo de competencias matemáticas, las consideradas en el plan de estudio de educación secundaria 2006. Esta descripción contiene actividades para un taller considerando el eje sobre el manejo de la información y una versión de principios para orientar su ejecución.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente artículo recopila la experiencia de expertos en la etnomatemática, de un grupo de discusión en RELME 27. Sus cuestionamientos se fundamentan, en la etnomatemática y el impacto de esta en el currículo escolar. Se toma en cuenta las características sociales del sistema educativo latinoamericano, los objetivos de desarrollo del milenio y el impacto de ambos, sobre la educación matemática de los pueblos originarios. Se plantean retos futuros y una visión sobre la recuperación de los saberes matemáticos. Metodológicamente se sustenta como una investigación de enfoque cualitativo, con diseño de teoría fundamental, donde sus datos se analizan por codificación abierta axial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asumiendo que la evaluación debe estar integrada en el proceso de enseñanza-aprendizaje, estamos desarrollando una investigación con profesores de matemáticas de secundaria en Bogotá (Colombia), para analizar sus concepciones y prácticas acerca de la evaluación sobre la resolución de problemas en matemáticas. Partimos de un cuestionario que indaga sobre la importancia que se da a diferentes aspectos cognitivos y afectivos, y al hecho de evaluarlos. Se identifica que en la evaluación de la resolución de problemas se continúa priorizando la evaluación de aspectos del dominio cognitivo, sobre el afectivo. Y en el dominio cognitivo se hace un mayor énfasis sobre los aspectos propios del conocimiento matemático que sobre las estrategias heurísticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La matemática en el contexto de las ciencias es una línea de investigación que reflexiona acerca de la vinculación que debe existir entre la matemática y las ciencias que la requieren, está constituida por cuatro fases: la curricular, la didáctica, la epistemológica y la cognitiva. En este artículo se presenta la fase didáctica. Esta fase incluye una estrategia didáctica (denominada matemática en contexto)que presenta conocimientos integrados a los alumnos a partir de una situación problémica de otras disciplinas, que al tratar de resolverla el estudiante se encuentra con la necesidad de tener nuevos conocimientos, lo cual da apertura a que el estudiante esté interesado en otros tópicos matemáticos. Para lograr la vinculación de la matemática con otras ciencias se describe un proceso metodológico a través de seis de las etapas de la matemática en contexto. Con esta estrategia el modelar matemáticamente está presente todo el tiempo, por lo que se presentan los resultados de una investigación que caracteriza y clasifica a los modelos matemáticos. Asimismo, los modelos son un elemento común a la matemática en contexto y a la resolución de problemas, por lo que se muestran las diferencias sustancias entre ambas estrategias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La sociedad actual demanda a su sistema educativo una formación estadística que capacite a sus ciudadanos para entender, comprender y resolver, la diversidad de información y problemas surgidos desde diversos ámbitos e interpretarlos en los contextos culturales que se presenten. En consecuencia, las curriculas educativas han incrementado sus contenidos estadísticos, desde la enseñanza primaria, hasta la universitaria, destacando la necesidad de la enseñanza de la estadística como una valiosa herramienta de la metodología científica. Un buen ejemplo lo constituye la estructura curricular del Sistema Educativo Argentino que a partir de 1995 establece la escolaridad obligatoria en 10 años, incluyendo la estadística desde los primeros cursos del nivel inicial. La formación básica en estadística ha sido encomendada, en los niveles no universitarios, a los profesores de matemáticas que generalmente no han recibido capacitación específica en el área. Para los profesores que se encuentran en esta situación, la enseñanza de la estadística supone un problema debido a que se requieren conocimientos, destrezas y experiencias en el tratamiento y elaboración de información que demanda: la selección de técnicas e instrumentos que mejor se adapten a los datos, la flexibilización para cambiar procedimientos, la interpretación adecuada de los resultados y la capacidad para evaluar la validez y fiabilidad de las conclusiones extraídas. Ser capaz de dominar esta actividad o enseñarla a un grupo de estudiantes no es una tarea simple, necesita de preparación previa y cierta experiencia. Holmes (2002) indica que, puesto que las lecciones de estadística, dentro de los libros de matemática han sido generalmente escritas por matemáticos, el objetivo preferente de las mismas es la actividad matemática y no la actividad estadística. Esta puede ser la razón por la cual prevalece la idea de que la estadística que se enseña en las escuelas o niveles básicos universitarios no refleja suficientemente la naturaleza eminentemente práctica de esta disciplina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente artículo se pretenden identificar los puntos críticos que entrañan mayor dificultad para los alumnos dentro de los contenidos numéricos en educación primaria. La finalidad didáctica de este trabajo reside en ser capaces de saber dónde se sitúan esos puntos críticos para proponer tratamientos educativos que los superen. También se proporcionan unas indicaciones para la enseñanza basadas en el carácter visual y espacial de los números, así como un conjunto de actividades abiertas, susceptibles de ser empleadas en el trabajo con los alumnos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A partir de la novela El curioso incidente del perro a medianoche de Mark Haddon, en la que se plantean diversos temas matemáticos, proponemos una serie de actividades para el alumno. A través de este trabajo se trata de demostrar que la literatura no es ajena a las matemáticas, además de animar a la lectura y enseñar temas matemáticos de interés en la actualidad como la criptografía de clave pública, la teoría de la probabilidad y la teoría del caos, que son aplicables a problemas del mundo real.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo presentamos los resultados de un cuestionario formado por cuatro problemas abiertos, a través de los cuales evaluamos la comprensión de la idea de media aritmética. Analizamos los componentes del significado que asigna una muestra de 53 alumnos de educación secundaria a este concepto, y, en particular, su comprensión de propiedades numéricas de este concepto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo, sobre los fundamentos matemáticos del planímetro, viene a continuar la tarea emprendida en 1990 cuando, con un grupo de trabajo que se formó en el IB Félix de Azara de Zaragoza durante el curso 1990-91, se constituyó un grupo de investigación educativa subvencionado por el MEC para trabajar en lo que podría constituir una matemática pretécnica. En este proyecto, entre otros temas, nos dedicamos a la construcción de aparatos de medida, estudiando sus fundamentos matemáticos y sus aplicaciones. El estudio de los fundamentos matemáticos del planímetro, por su nivel, caía fuera de lo que se podría explicar a los alumnos de bachillerato, pero puede resultar interesante para despertar la curiosidad de los profesores, como nos ocurrió a nosotros. '

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lo largo de la historia han existido una serie de problemas que han intrigado, a la vez, frustrado los matemáticos de todos los tiempos. Algunos de ellos siguen sin resolverse y otros como problemas isoperimétricos del que venimos preocupándonos desde el número 33 de suma tan sencillo de enunciar y sin embargo tan difícil de demostrar, se resolvieron tras siglos de esfuerzo. Cuando decimos anterior lo hacemos teniendo muy en cuenta lo que tal afirmación significa. Es decir, resolver un problema no consiste sólo en dar una solución sino demostrar que tal solución existe. De esta cuestión nos ocupamos ahora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El problema de los puntos, –que ya habían abordado autores, como Pacioli, Tartaglia y Cardano–, es un problema de decisión bajo incertidumbre, que motivó la correspondencia entre Pascal y Fermat en 1654. Ahora bien, en la primera carta que escribe Pascal a Fermat, introduce un nuevo problema sobre dados, también de decisión bajo incertidumbre, «el problema de las partidas no jugadas», que ha motivado el presente trabajo. Aunque más sencillo que el problema de los puntos, ambos tienen cosas en común. Fermat aportará soluciones a estos problemas basadas en la enumeración de todos los posibles resultados, lo que Pascal denomina «el método combinatorio». Al tratar de evitar las enumeraciones de todos los resultados, Pascal descubrirá lo que llamó «método universal»: la esperanza matemática. Igualmente, y a requerimientos de Pascal, Fermat, descubrirá lo que llamamos el modelo de Pascal o modelo geométrico. En el presente trabajo aplicamos estos nuevos métodos al problema de las partidas no jugadas, lo que permitirá apreciar el trabajo que desarrollaron ambos matemáticos.