980 resultados para Parabolic quantum wells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to present a solution to the quantum phase problem of the single-mode optical field. The solution is based on the use of phase shift covariant normalized positive operator measures. These measures describe realistic direct coherent state phase measurements such as the phase measurement schemes based on eight-port homodyne detection or heterodyne detection. The structure of covariant operator measures and, more generally, covariant sesquilinear form measures is analyzed in this work. Four different characterizations for phase shift covariant normalized positive operator measures are presented. The canonical covariant operator measure is definded and its properties are studied. Finally, some other suggested phase theories are introduced to investigate their connections to the covariant sesquilinear form measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the density of the solution $X(t,x)$ of a stochastic heat equation with small noise at a fixed $t\in [0,T]$, $x \in [0,1]$.In the paper we study the asymptotics of this density as the noise is vanishing. A kind of Taylor expansion in powers of the noiseparameter is obtained. The coefficients and the residue of the expansion are explicitly calculated.In order to obtain this result some type of exponential estimates of tail probabilities of the difference between the approximatingprocess and the limit one is proved. Also a suitable local integration by parts formula is developped.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The original and modified Wells score are widely used prediction rules for pre-test probability assessment of deep vein thrombosis (DVT). The objective of this study was to compare the predictive performance of both Wells scores in unselected patients with clinical suspicion of DVT.Methods: Consecutive inpatients and outpatients with a clinical suspicion of DVT were prospectively enrolled. Pre-test DVT probability (low/intermediate/high) was determined using both scores. Patients with a non-high probability based on the original Wells score underwent D-dimers measurement. Patients with D-dimers <500 mu g/L did not undergo further testing, and treatment was withheld. All others underwent complete lower limb compression ultrasound, and those diagnosed with DVT were anticoagulated. The primary study outcome was objectively confirmed symptomatic venous thromboembolism within 3 months of enrollment.Results: 298 patients with suspected DVT were included. Of these, 82 (27.5%) had DVT, and 46 of them were proximal. Compared to the modified score, the original Wells score classified a higher proportion of patients as low-risk (53 vs 48%; p<0.01) and a lower proportion as high-risk (17 vs 15%; p=0.02); the prevalence of proximal DVT in each category was similar with both scores (7-8% low, 16-19% intermediate, 36-37% high). The area under the receiver operating characteristic curve regarding proximal DVT detection was similar for both scores, but they both performed poorly in predicting isolated distal DVT and DVT in inpatients.Conclusion: The study demonstrates that both Wells scores perform equally well in proximal DVT pre-test probability prediction. Neither score appears to be particularly useful in hospitalized patients and those with isolated distal DVT. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an extension of the multi-scale finite-volume (MSFV) method is devised, which allows to Simulate flow and transport in reservoirs with complex well configurations. The new framework fits nicely into the data Structure of the original MSFV method,and has the important property that large patches covering the whole well are not required. For each well. an additional degree of freedom is introduced. While the treatment of pressure-constraint wells is trivial (the well-bore reference pressure is explicitly specified), additional equations have to be solved to obtain the unknown well-bore pressure of rate-constraint wells. Numerical Simulations of test cases with multiple complex wells demonstrate the ability of the new algorithm to capture the interference between the various wells and the reservoir accurately. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to macroscopic susceptibilities directly comparable with experimental results. By seperating the discrete local field into two distinct contribution we define two different microscopic properties, the so-called solute and effective properties. The solute properties account for the pure solvent effects, i.e., effects even when the macroscopic electric field is zero, and the effective properties account for both the pure solvent effects and the effect from the induced dipoles in the solvent due to the macroscopic electric field. We present results for the linear and nonlinear polarizabilities of water and acetonitrile both in the gas phase and in the liquid phase. For all the properties we find that the pure solvent effect increases the properties whereas the induced electric field decreases the properties. Furthermore, we present results for the refractive index, third-harmonic generation (THG), and electric field induced second-harmonic generation (EFISH) for liquid water and acetonitrile. We find in general good agreement between the calculated and experimental results for the refractive index and the THG susceptibility. For the EFISH susceptibility, however, the difference between experiment and theory is larger since the orientational effect arising from the static electric field is not accurately described

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is no doubt about the necessity of protecting digital communication: Citizens are entrusting their most confidential and sensitive data to digital processing and communication, and so do governments, corporations, and armed forces. Digital communication networks are also an integral component of many critical infrastructures we are seriously depending on in our daily lives. Transportation services, financial services, energy grids, food production and distribution networks are only a few examples of such infrastructures. Protecting digital communication means protecting confidentiality and integrity by encrypting and authenticating its contents. But most digital communication is not secure today. Nevertheless, some of the most ardent problems could be solved with a more stringent use of current cryptographic technologies. Quite surprisingly, a new cryptographic primitive emerges from the ap-plication of quantum mechanics to information and communication theory: Quantum Key Distribution. QKD is difficult to understand, it is complex, technically challenging, and costly-yet it enables two parties to share a secret key for use in any subsequent cryptographic task, with an unprecedented long-term security. It is disputed, whether technically and economically fea-sible applications can be found. Our vision is, that despite technical difficulty and inherent limitations, Quantum Key Distribution has a great potential and fits well with other cryptographic primitives, enabling the development of highly secure new applications and services. In this thesis we take a structured approach to analyze the practical applicability of QKD and display several use cases of different complexity, for which it can be a technology of choice, either because of its unique forward security features, or because of its practicability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contamination of weather radar echoes by anomalous propagation (anaprop) mechanisms remains a serious issue in quality control of radar precipitation estimates. Although significant progress has been made identifying clutter due to anaprop there is no unique method that solves the question of data reliability without removing genuine data. The work described here relates to the development of a software application that uses a numerical weather prediction (NWP) model to obtain the temperature, humidity and pressure fields to calculate the three dimensional structure of the atmospheric refractive index structure, from which a physically based prediction of the incidence of clutter can be made. This technique can be used in conjunction with existing methods for clutter removal by modifying parameters of detectors or filters according to the physical evidence for anomalous propagation conditions. The parabolic equation method (PEM) is a well established technique for solving the equations for beam propagation in a non-uniformly stratified atmosphere, but although intrinsically very efficient, is not sufficiently fast to be practicable for near real-time modelling of clutter over the entire area observed by a typical weather radar. We demonstrate a fast hybrid PEM technique that is capable of providing acceptable results in conjunction with a high-resolution terrain elevation model, using a standard desktop personal computer. We discuss the performance of the method and approaches for the improvement of the model profiles in the lowest levels of the troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical transport in a modulation doped heterostructure of In0.53Ga0.47As/In0.52Al0.48As grown on Si by molecular beam epitaxy has been measured. Quantum Hall effect and Subnikov¿De Haas oscillations were observed indicating the two¿dimensional character of electron transport. A mobility of 20¿000 cm2/V¿s was measured at 6 K for an electron sheet concentration of 1.7×1012 cm¿2. Transmission electron microscopy observations indicated a significant surface roughness and high defect density of the InGaAs/InAlAs layers to be present due to the growth on silicon. In addition, fine¿scale composition modulation present in the In0.53Ga0.47As/In0.52Al0.48As may further limit transport properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the Raman scattering of self-assembled InSb dots grown on (001) oriented InP substrates. The samples were grown by pulsed molecular beam epitaxy mode. Two types of samples have been investigated. In one type the InSb dots were capped with 200 monolayers of InP; in the other type no capping was deposited after the InSb dot formation. We observe two peaks in the Raman spectra of the uncapped dot, while only one peak is observed in the Raman spectra of the capped dots. In the case of the uncapped dots the peaks are attributed to LO-like and TO-like vibration of completely relaxed InSb dots, in agreement with high resolution transmission electron microscopy photographs. The Raman spectra of the capped dot suggest a different strain state in the dot due to the capping layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show how to decompose any density matrix of the simplest binary composite systems, whether separable or not, in terms of only product vectors. We determine for all cases the minimal number of product vectors needed for such a decomposition. Separable states correspond to mixing from one to four pure product states. Inseparable states can be described as pseudomixtures of four or five pure product states, and can be made separable by mixing them with one or two pure product states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The symmetrical two-dimensional quantum wire with two straight leads joined to an arbitrarily shaped interior cavity is studied with emphasis on the single-mode approximation. It is found that for both transmission and bound-state problems the solution is equivalent to that for an energy-dependent one-dimensional square well. Quantum wires with a circular bend, and with single and double right-angle bends, are examined as examples. We also indicate a possible way to detect bound states in a double bend based on the experimental setup of Wu et al.