998 resultados para Industrial solution
Resumo:
For industrial environments it is true that Ethernet technologies are there to stay. In fact, a number of characteristics are boosting the eagerness of extending Ethernet to also cover factory-floor applications. Fullduplex links, non-blocking and priority-based switching, bandwidth availability, just to mention a few, are characteristics upon which that eagerness is building up. But, will Ethernet technologies really manage to replace traditional field bus networks? Fieldbus fundamentalists often argue that the two things are not comparable. In fact, Ethernet technology, by itself, does not include features above the lower layers of the OSI communication model. Where are the higher layers and the application enablers that permit building real industrial applications? And, taking for free that they are available, what is the impact of those protocols, mechanisms and application models on the overall performance of Ethernet-based distributed factory-floor applications?
Resumo:
In the past few years the so-called gadgets like cellular phones, personal data assistants and digital cameras are more widespread even with less technological aware users. However, for several reasons, the factory-floor itself seems to be hermetic to this changes ... After the fieldbus revolution, the factory-floor has seen an increased use of more and more powerful programmable logic controllers and user interfaces but the way they are used remains almost the same. We believe that new user-computer interaction techniques including multimedia and augmented rcaliry combined with now affordable technologies like wearable computers and wireless networks can change the way the factory personal works together with the roachines and the information system on the factory-floor. This new age is already starting with innovative uses of communication networks on the factory-floor either using "standard" networks or enhancing industrial networks with multimedia and wireless capabilities.
Resumo:
Recent developments in the factory floor technologies together with the widespread use of TCP/IP and the Internet are increasing the eagerness to support a new wide class of devices and applications, such as industrial multimedia applications, in factory floor networks. This paper presents how this new field of applications can be put into practice, via a manufacturing cell field trial being implemented. This manufacturing automation field trial involves the use of traditional distributed computer control systems and 'factory-floor-oriented' multimedia (e.g. voice, video) application services.
Resumo:
In this paper we describe a real-time industrial communication network able to support both controlrelated and multimedia traffic. The industrial communication network is based on the PROFIBUS standard, with multimedia capabilities being provided by an adequate integration of TCP/IP protocols into the PROFIBUS stack. From the operational point of view the integration of TCP/IP into PROFIBUS is by itself a challenge, since the master-slave nature of the PROFIBUS MAC makes complex the implementation of the symmetry inherent to IP communications. From the timeliness point of view the challenge is two folded. On one hand the multimedia traffic should not interfere with the timing requirements of the "native" control-related PROFIBUS traffic (typically hard real-time). On the other hand multimedia traffic requires certain levels of quality-of-service to be attained. In this paper we provide a methodology that enables fulfilling the timing requirements for both types of traffic in these real-time industrial LAN. Moreover, we describe suitable algorithms for the scheduling support of concurrent multimedia streams.
Resumo:
This paper summarises the most important solutions that have emerged from the work carried out by our team within the framework of the EU (IST-1999-11316) project RFieldbus - High Performance Wireless Fieldbus in Industrial Multimedia-Related Environment. Within this project, Profibus was chosen as the fieldbus platform. Essentially, extensions to the current Profibus standard are being developed in order to provide Profibus with wireless, mobility and industrialmultimedia capabilities. In fact, providing these extensions means fulfilling strong requirements, namely to encompass the communication between wired (currently available) and wireless/mobile devices and to support real-time control traffic and multimedia traffic in the same network.
Resumo:
Trabalho Final de Mestrado para obtenção de grau de Mestre em Engenharia Mecânica na Especialidade de Manutenção e Produção
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia/Automação e Eletrónica Industrial
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil Perfil Estruturas
Resumo:
O papel estratégico da saúde na agenda de desenvolvimento nacional tem sido crescentemente reconhecido e institucionalizado. Além de sua importância como elemento estruturante do Estado de Bem-Estar Social, a saúde é protagonista na geração de inovação - elemento essencial para a competitividade na sociedade do conhecimento. Contudo, a base produtiva da saúde ainda é frágil, o que prejudica tanto a prestação universal de serviços em saúde quanto uma inserção competitiva nacional em ambiente globalizado. Essa situação sugere a necessidade de uma análise mais sistemática das complexas relações entre os interesses produtivos, tecnológicos e sociais no âmbito da saúde. Consequentemente, é necessário aprofundar o conhecimento sobre o Complexo Econômico-Industrial da Saúde devido ao seu potencial de contribuir para um modelo de desenvolvimento socialmente inclusivo. Isso significa reverter a hierarquia entre os interesses econômicos e os sociais no campo sanitário, e assim minimizar a vulnerabilidade da política de saúde brasileira.
Resumo:
Fieldbus networks are becoming increasingly popular in industrial computer-controlled systems. More recently, there has been the desire to extend the capabilities of fieldbuses to cover functionalities not previously considered in such networks, with particular emphasis on industrial wireless communications. Thinking about wireless means considering hybrid wired/wireless solutions capable of interoperating with legacy (wired) systems. One possible solution is to use intermediate systems (IS) acting as repeaters to interconnect the wired and wireless parts. In contrast, we analyze a solution where intermediate systems are implemented as bridges/routers. We detail the main advantages in terms of dependability and timeliness, and propose mechanisms to manage message transactions and intercell mobility.
Resumo:
De que é que falamos quando nos referimos a AUTOMAÇÃO? - Estamos no âmbito da engenharia eletrotécnica, da mecânica, da eletrónica, da programação, das comunicações, da instrumentação, da pneumática, ….? Na realidade referimo-nos a um pouco disto tudo - a automação será possivelmente a área de engenharia mais pluridisciplinar e integradora de tecnologia. Quererá isto dizer que se trata de uma atividade de Engenharia complexa e densa? - Sim e não! - Vejamos; é vasta e densa porque o seu exercício obriga ao conhecimento de um alargado e diversificado leque de tecnologias mas, a sua base teórica, ou se quisermos os seus “algoritmos”, são bastante simples; baseiam-se em lógica e em sequências temporais. Que competências serão então necessárias para se exercer Automação? - Um conhecimento transversal de engenharia, com particular foco na Engenharia Eletrotécnica e uma boa experiência de terreno. Partindo desta constatação este artigo tem a intenção de abordar a automação de um ponto de vista eminentemente prático e aplicado.
Resumo:
This paper provides a comprehensive study on how to use Profibus fieldbus networks to support real-time industrial communications, that is, on how to ensure the transmission of real-time messages within a maximum bound time. Profibus is base on a simplified timed token (TT) protocol, which is a well-proved solution for real-time communication systems. However, Profibus differs with respect to the TT protocol, thus preventing the application of the usual TT protocol real-time analysis. In fact, real-time solutions for networks based on the TT protocol rely on the possibility of allocating specific bandwidth for the real-time traffic. This means that a minimum amount of time is always available, at each token visit, to transmit real-time messages, transversely, with the Profibus protocol, in the worst case, only one real-time message is processed per token visit. The authors propose two approaches to guarantee the real-time behavior of the Profibus protocol: (1) an unconstrained low-priority traffic profile; and (2) a constrained low-priority traffic profile. The proposed analysis shows that the first profile is a suitable approach for more responsive systems (tighter deadlines), while the second allows for increased nonreal-time traffic throughput
Resumo:
Sensor/actuator networks promised to extend automated monitoring and control into industrial processes. Avionic system is one of the prominent technologies that can highly gain from dense sensor/actuator deployments. An aircraft with smart sensing skin would fulfill the vision of affordability and environmental friendliness properties by reducing the fuel consumption. Achieving these properties is possible by providing an approximate representation of the air flow across the body of the aircraft and suppressing the detected aerodynamic drags. To the best of our knowledge, getting an accurate representation of the physical entity is one of the most significant challenges that still exists with dense sensor/actuator network. This paper offers an efficient way to acquire sensor readings from very large sensor/actuator network that are located in a small area (dense network). It presents LIA algorithm, a Linear Interpolation Algorithm that provides two important contributions. First, it demonstrates the effectiveness of employing a transformation matrix to mimic the environmental behavior. Second, it renders a smart solution for updating the previously defined matrix through a procedure called learning phase. Simulation results reveal that the average relative error in LIA algorithm can be reduced by as much as 60% by exploiting transformation matrix.
Resumo:
In embedded systems, the timing behaviour of the control mechanisms are sometimes of critical importance for the operational safety. These high criticality systems require strict compliance with the offline predicted task execution time. The execution of a task when subject to preemption may vary significantly in comparison to its non-preemptive execution. Hence, when preemptive scheduling is required to operate the workload, preemption delay estimation is of paramount importance. In this paper a preemption delay estimation method for floating non-preemptive scheduling policies is presented. This work builds on [1], extending the model and optimising it considerably. The preemption delay function is subject to a major tightness improvement, considering the WCET analysis context. Moreover more information is provided as well in the form of an extrinsic cache misses function, which enables the method to provide a solution in situations where the non-preemptive regions sizes are small. Finally experimental results from the implementation of the proposed solutions in Heptane are provided for real benchmarks which validate the significance of this work.