991 resultados para Industrial network
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
For industrial environments it is true that Ethernet technologies are there to stay. In fact, a number of characteristics are boosting the eagerness of extending Ethernet to also cover factory-floor applications. Fullduplex links, non-blocking and priority-based switching, bandwidth availability, just to mention a few, are characteristics upon which that eagerness is building up. But, will Ethernet technologies really manage to replace traditional field bus networks? Fieldbus fundamentalists often argue that the two things are not comparable. In fact, Ethernet technology, by itself, does not include features above the lower layers of the OSI communication model. Where are the higher layers and the application enablers that permit building real industrial applications? And, taking for free that they are available, what is the impact of those protocols, mechanisms and application models on the overall performance of Ethernet-based distributed factory-floor applications?
Resumo:
In the past few years the so-called gadgets like cellular phones, personal data assistants and digital cameras are more widespread even with less technological aware users. However, for several reasons, the factory-floor itself seems to be hermetic to this changes ... After the fieldbus revolution, the factory-floor has seen an increased use of more and more powerful programmable logic controllers and user interfaces but the way they are used remains almost the same. We believe that new user-computer interaction techniques including multimedia and augmented rcaliry combined with now affordable technologies like wearable computers and wireless networks can change the way the factory personal works together with the roachines and the information system on the factory-floor. This new age is already starting with innovative uses of communication networks on the factory-floor either using "standard" networks or enhancing industrial networks with multimedia and wireless capabilities.
Resumo:
Recent developments in the factory floor technologies together with the widespread use of TCP/IP and the Internet are increasing the eagerness to support a new wide class of devices and applications, such as industrial multimedia applications, in factory floor networks. This paper presents how this new field of applications can be put into practice, via a manufacturing cell field trial being implemented. This manufacturing automation field trial involves the use of traditional distributed computer control systems and 'factory-floor-oriented' multimedia (e.g. voice, video) application services.
CIDER - envisaging a COTS communication infrastructure for evolutionary dependable real-time systems
Resumo:
It is foreseen that future dependable real-time systems will also have to meet flexibility, adaptability and reconfigurability requirements. Considering the distributed nature of these computing systems, a communication infrastructure that permits to fulfil all those requirements is thus of major importance. Although Ethernet has been used primarily as an information network, there is a strong belief that some very recent technological advances will enable its use in dependable applications with real-time requirements. Indeed, several recently standardised mechanisms associated with Switched-Ethernet seem to be promising to enable communication infrastructures to support hard real-time, reliability and flexible distributed applications. This paper describes the motivation and the work being developed within the CIDER (Communication Infrastructure for Dependable Evolvable Real-Time Systems) project, which envisages the use of COTS Ethernet as an enabling technology for future dependable real-time systems. It is foreseen that the CIDER approach will constitute a relevant stream of research since it will bring together cutting edge research in the field of real-time and dependable distributed systems and the industrial eagerness to expand Ethernet responsabilities to support dependable real-time applications.
Resumo:
In this paper we survey the most relevant results for the prioritybased schedulability analysis of real-time tasks, both for the fixed and dynamic priority assignment schemes. We give emphasis to the worst-case response time analysis in non-preemptive contexts, which is fundamental for the communication schedulability analysis. We define an architecture to support priority-based scheduling of messages at the application process level of a specific fieldbus communication network, the PROFIBUS. The proposed architecture improves the worst-case messages’ response time, overcoming the limitation of the first-come-first-served (FCFS) PROFIBUS queue implementations.
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a Multiple Logical Ring (MLR) approach, thus with multiple independent tokens, where the communication between different domains was supported by the Inter-Domain Protocol (IDP). The proposed architecture also supports mobility of stations between different wireless cells. To that hybrid wired/wireless networking architecture we have proposed a worst-case response timing analysis of the IDP, without considering inter-cell mobility (or handoff) of stations. In this paper, we advance that previous work by proposing a worst-case timing analysis of the mobility procedure.
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a multiple logical ring (MLR) approach, thus with multiple independent tokens, to which a specific bridging protocol extension, the inter-domain protocol (IDP), was proposed. The IDP offers compatibility with standard PROFIBUS, and includes mechanisms to support inter-cell mobility of wireless nodes. We advance that work by proposing a worst-case response timing analysis of the IDP.
Resumo:
Trabalho Final de Mestrado para obtenção de grau de Mestre em Engenharia Mecânica na Especialidade de Manutenção e Produção
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia/Automação e Eletrónica Industrial
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil Perfil Estruturas
Resumo:
O papel estratégico da saúde na agenda de desenvolvimento nacional tem sido crescentemente reconhecido e institucionalizado. Além de sua importância como elemento estruturante do Estado de Bem-Estar Social, a saúde é protagonista na geração de inovação - elemento essencial para a competitividade na sociedade do conhecimento. Contudo, a base produtiva da saúde ainda é frágil, o que prejudica tanto a prestação universal de serviços em saúde quanto uma inserção competitiva nacional em ambiente globalizado. Essa situação sugere a necessidade de uma análise mais sistemática das complexas relações entre os interesses produtivos, tecnológicos e sociais no âmbito da saúde. Consequentemente, é necessário aprofundar o conhecimento sobre o Complexo Econômico-Industrial da Saúde devido ao seu potencial de contribuir para um modelo de desenvolvimento socialmente inclusivo. Isso significa reverter a hierarquia entre os interesses econômicos e os sociais no campo sanitário, e assim minimizar a vulnerabilidade da política de saúde brasileira.
Resumo:
Determining the response time of message transactions is one of the major concerns in the design of any distributed computer-controlled system. Such response time is mainly dependent on the medium access delay, the message length and the transmission delay. While the medium access delay in fieldbus networks has been thoroughly studied in the last few years, the transmission delay has been almost ignored as it is considered that it can be neglected when compared to the length of the message itself. Nevertheless, this assumption is no longer valid when considering the case of hybrid wired/wireless fieldbus networks, where the transmission delay through a series of different mediums can be several orders of magnitude longer than the length of the message itself. In this paper, we show how to compute the duration of message transactions in hybrid wired/wireless fieldbus networks. This duration is mainly dependent on the duration of the request and response frames and on the number and type of physical mediums that the frames must cross between initiator and responder. A case study of a hybrid wired/wireless fieldbus network is also presented, where it becomes clear the interest of the proposed approach
Resumo:
In this paper we address the ability of WorldFIP to cope with the real-time requirements of distributed computer-controlled systems (DCCS). Typical DCCS include process variables that must be transferred between network devices both in a periodic and sporadic (aperiodic) basis. The WorldFIP protocol is designed to support both types of traffic. WorldFIP can easily guarantee the timing requirements for the periodic traffic. However, for the aperiodic traffic more complex analysis must be made in order to guarantee its timing requirements. This paper describes work that is being carried out to extend previous relevant work, in order to include the actual schedule for the periodic traffic in the worst-case response time analysis of sporadic traffic in WorldFIP networks