945 resultados para Evolved gas analysis
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.
Resumo:
The European Union continues to exert a large influence on the direction of member states energy policy. The 2020 targets for renewable energy integration have had significant impact on the operation of current power systems, forcing a rapid change from fossil fuel dominated systems to those with high levels of renewable power. Additionally, the overarching aim of an internal energy market throughout Europe has and will continue to place importance on multi-jurisdictional co-operation regarding energy supply. Combining these renewable energy and multi-jurisdictional supply goals results in a complicated multi-vector energy system, where the understanding of interactions between fossil fuels, renewable energy, interconnection and economic power system operation is increasingly important. This paper provides a novel and systematic methodology to fully understand the changing dynamics of interconnected energy systems from a gas and power perspective. A fully realistic unit commitment and economic dispatch model of the 2030 power systems in Great Britain and Ireland, combined with a representative gas transmission energy flow model is developed. The importance of multi-jurisdictional integrated energy system operation in one of the most strategically important renewable energy regions is demonstrated.
Resumo:
2011
Resumo:
Marketing communications as a discipline has changed significantly in both theory and practice over the past decade. But has our teaching of IMC kept pace with the discipline changes? The purpose of this paper is to explore how far the evolving concepts of IMC are reaching university learners. By doing this, the paper offers an approach to assessing how well marketing curricula are fulfilling their purpose. The course outlines (syllabi) for all IMC courses in 30 universities in Australia and five universities in New Zealand were analyzed. The findings suggest that most of what is taught in the units is not IMC. It is not directed by the key constructs of IMC, nor by the research informing the discipline. Rather, it appears to have evolved little from traditional promotion management units and is close in content and structure to many introductory advertising courses. This paper suggests several possible explanations for this, including: (1) a tacit rejection of IMC as a valid concept; (2) a lack of information about what IMC is and what it is not; and (3) a scarcity of teaching and learning materials that are clearly focused on key constructs and research issues of IMC.
Resumo:
"By understanding how places have evolved, we are better able to guide development and change in the urban fabric and avoid the incongruity created by so much of the modern environment" (MacCormac, R (1996), An anatomy of London, Built Environment, Dec 1996 This paper proposes a theory on the relevance of mapping the evolutionary aspects of historical urban form in order to develop a measure of evaluating architectural elements within urban forms, through to deriving parameters for new buildings. By adopting Conzen's identification of the tripartite division of urban form; the consonance inurban form of a particular palce resides in the elements and measurable values tha makeup the fine grain aggregates of urban form. The paper will demonstrate throughthe case study of Brisbane in Australia, a method of conveying these essential components that constitute a cities continuity of form and active usage. By presenting the past as a repository of urban form characteristics, it is argued that concise architectural responses that stem from such knowledge should result in an engaged urban landscape. The essential proposition is that urban morphology is a missing constituent in the process of urban design, and that the approach of the geographical discipline to the study of urban morphology holds the key to providing the evidence of urban growth characteristics, and this methodology suggests possibilities for an architectural approach that can comprehensively determine qualitative aspects of urban buildings. The relevance of this research lies in a potential to breach the limitations of current urban analysis whilst continuing the evolving currency of urban morphology as an integral practice in the design of our cities.
Resumo:
Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.
Resumo:
Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation techniques. The films were deposited at room temperature in high vacuum condition on glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films indicated non-crystalline nature. The surface roughness of all the films showed in the order of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as observed using Transmission Electron Microscopy (TEM). A slight difference in optical band gap energies of 3.22 eV and 3.12 eV were found between the as-deposited WO3 and WO3:Fe films, respectively. However, the difference in the band gap energies of the annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the subject of another paper.
Resumo:
The political challenges impeding the negotiation of a comprehensive multilateral agreement on international climate change have received a great deal of attention. A question that has gone somewhat overlooked is what essential components an effective regulatory scheme to reduce greenhouse gas emissions should contain. The objective of this article is to examine the regulatory architecture of current international arrangements relating to global climate change regulation. A systematic analysis of the structure, substantive composition, and administrative characteristics of the UNFCCC and Kyoto Protocol is undertaken. The analytical standard against which the agreements are examined is whether current international regulatory arrangements satisfy the basic requirements of regulatory coherence. The analysis identifies how the present scheme consists of a complex institutional structure that lacks a substantive regulatory core. The implications of the absence of functional and effective mechanisms to govern greenhouse gas emission reductions are considered in relation to the principles of good regulatory design. This, in turn, provides useful insights into how a better regulatory scheme might be designed.
Resumo:
Thermogravimetric analysis-mass spectrometry, X-ray diffraction and scanning electron microscopy (SEM) were used to characterize eight kaolinite samples from China. The results show that the thermal decomposition occurs in three main steps (a) desorption of water below 100 °C, (b) dehydration at about 225 °C, (c) well defined dehydroxylation at around 450 °C. It is also found that decarbonization took place at 710 °C due to the decomposition of calcite impurity in kaolin. The temperature of dehydroxylation of kaolinite is found to be influenced by the degree of disorder of the kaolinite structure and the gases evolved in the decomposition process can be various because of the different amount and kinds of impurities. It is evident by the mass spectra that the interlayer carbonate from impurity of calcite and organic carbon is released as CO2 around 225, 350 and 710 °C in the kaolinite samples.
Resumo:
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.
Resumo:
Because of the greenhouse gas emissions implications of the market dominating electric hot water systems, governments in Australia have implemented policies and programs to encourage the uptake of solar water heaters (SWHs) in the residential market as part of climate change adaptation and mitigation strategies. The cost-benefit analysis that usually accompanies all government policy and program design could be simplistically reduced to the ratio of expected greenhouse gas reductions of SWH to the cost of a SWH. The national Register of Solar Water Heaters specifies how many renewable energy certificates (RECs) are allocated to complying SWHs according to their expected performance, and hence greenhouse gas reductions, in different climates. Neither REC allocations nor rebates are tied to actual performance of systems. This paper examines the performance of instantaneous gas-boosted solar water heaters installed in new residences in a housing estate in south-east Queensland in the period 2007 – 2010. The evidence indicates systemic failures in installation practices, resulting in zero solar performance or dramatic underperformance (estimated average 43% solar contribution). The paper will detail the faults identified, and how these faults were eventually diagnosed and corrected. The impacts of these system failures on end-use consumers are discussed before concluding with a brief overview of areas where further research is required in order to more fully understand whole of supply chain implications.
Resumo:
Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.
Resumo:
Pt/nanostructured WO3/SiC Schottky diodes were fabricated and applied for hydrogen gas sensing applications. The nanostructured WO3 films were synthesized from tungsten coated SiC substrates via an acid-etching method using a 1.5 M HNO3 solution for 1 hr, 2 hrs and 3 hrs duration. Scanning electron microscopy of the developed films revealed platelet crystals with thicknesses in the order of 20-60 nm and lengths between 100-700 nm. X-ray diffraction analysis revealed that the rate of oxidation of tungsten increases as the duration of acid-etching increases. The devices were tested towards hydrogen gas balanced in air at different temperatures from 25°C to 200°C. At 200°C, voltage shifts of 0.45 V, 0.93 V and 2.37 V were recorded for devices acid-etched for 1 hr, 2 hrs and 3 hrs duration, respectively upon exposure to 1% hydrogen, under a constant forward bias current of 500 µA.