884 resultados para ETHENE-RICH STREAMS
Resumo:
This manuscript describes the application and further development of the TAP technique in kinetic characterization of heterogeneous catalysis. The major application of TAP systems is to study mechanisms, kinetics and transport phenomena in heterogeneous catalysis, all of which is made possible by the sub-millisecond time resolution. Furthermore, the kinetic information obtained can be used to gain an insight into the mechanism occurring over the catalyst system. This is advantageous as heterogeneous catalysts with an improved efficiency can be developed as a result. TAP kinetic studies are carried out at low pressure (~1x10-7 mbar) and TAP pulses are sufficiently small (1013-1015 molecules) so as to maintain this low pressure. The use of a small number of molecules in comparison to the total number of active sites means the state of the catalyst remains relatively unchanged. The use of the low intensity pulses also makes the pressure gradient negligible and so allows the TAP reactor system to operate in the Knudsen Diffusion regime, where gas-gas reactions are eliminated. Hence only gas-catalyst reactions are investigated and, by the use of moment analysis of observed exit flow, rate constants of elementary steps of the reaction can be obtained.
In this manuscript, two attempts to further the TAP technique are reported. Firstly, the work undertaken at QUB to attempt to control the number of molecules of condensable reagents that can be pulsed during a TAP pulse experiment is disclosed. Secondly, a collaborative project with SAI Ltd Manchester is discussed in a separate chapter, where technical details and validation of a customised time of flight mass spectrometer (ToF MS) for the QUB TAP-1 system are reported. A collaborative project with Cardiff Catalysis Institute focusing on the study of CO oxidation over hopcalite catalysts is also reported. The analysis of the experimental results has provided an insight into the possible mechanism of the oxidation of CO over these catalysts. A correction function has also been derived which accounts for the adsorption of reactant molecules over inert materials that are used for the reactor packing in TAP experiments. This function was then applied to the selective reduction of O2 in a H2 rich ethene feed, so that more accurate TAP moment based analysis could be conducted.
Resumo:
Stream bed metal deposits affect the taxon richness, density and taxonomic diversity of primary and secondary producers by a variety of direct or indirect abiotic and biotic processes but little is known about the relative importance of these processes over a deposit metal concentration gradient. Inorganic matter (IM), algal and non-photosynthetic detrital (NPD) dry biomasses were estimated for 10 monthly samples, between 2007 and 2008, from eight sites differing in deposit density. Invertebrate abundance, taxon richness and composition were also determined. Relations between these variables were investigated by canonical correspondence analysis (CCA), generalized estimating equation models and path analysis. The first CCA axis correlates with deposit density and invertebrate abundance, with lumbriculids and chironomids increasing in abundance with deposit density and all other taxa declining. Community structure changes significantly above a deposit density of approximately 8 mg cm, when algal biomass, invertebrate richness and diversity decline. Invertebrate richness and diversity were determined by direct effects of NPD biomass and indirect effects of IM. Algal biomass only had an effect on invertebrate abundance. Possible pH, oxygen, food and ecotoxicological effects of NPD biomass on the biota are discussed.
Resumo:
We propose a spatio-temporal rich model of motion vector planes as a part of a full steganalytic system against motion vector based steganography. Superior detection accuracy of the rich model over the previous methods has been lately demonstrated for digital images in both spatial and DCT domain. It has not been heretofore used for detection of motion vector steganography. We also introduced a transformation so as to extend the feature set with temporal residuals. We carried out the tests along with most recent motion vector steganalysis and steganography methods. Test results show that the proposed model delivers an outstanding performance compared to the previous methods.
Resumo:
A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.
Resumo:
OBJECTIVES: There is previous epidemiological evidence that intake of polyphenol-rich foods has been associated with reduced cardiovascular disease risk. We aimed to investigate the effect of increasing dietary polyphenol intake on microvascular function in hypertensive participants.
METHODS: All participants completed a 4-week run-in phase, consuming <2 portions of fruit and vegetables (F&V) daily and avoiding berries and dark chocolate. Subjects were then randomised to continue with the low-polyphenol diet for 8 weeks or to consume a high-polyphenol diet of six portions F&V (including one portion of berries/day and 50 g of dark chocolate). Endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside) vasodilator responses were assessed by venous occlusion plethysmography. Compliance with the intervention was measured using food diaries and biochemical markers.
RESULTS: Final analysis of the primary endpoint was conducted on 92 participants. Between-group comparison of change in maximum % response to ACh revealed a significant improvement in the high-polyphenol group (p=0.02). There was a significantly larger increase in vitamin C, carotenoids and epicatechin in the high-polyphenol group (between-group difference p<0.001; p<0.001; p=0.008, respectively).
CONCLUSIONS: This study has shown that increasing the polyphenol content of the diet via consumption of F&V, berries and dark chocolate results in a significant improvement in an established marker of cardiovascular risk in hypertensive participants.
Resumo:
Being of high relevance for many technological applications, the solubility of sour gases in solvents of low volatility is still poorly described and understood. Aiming at purifying natural gas streams, the present work contributes for a more detailed knowledge and better understanding of the solubility of sour gases in these fluids, in particularly on ionic liquids. A new apparatus, developed and validated specially for phase equilibria studies of this type of systems, allowed the study of the solvent basicity, molecular weight and polarity influence on the absorption of carbon dioxide and methane. The non ideality of carbon dioxide solutions in ionic liquids and other low volatile solvents, with which carbon dioxide is known to form electron donor-acceptor complexes, is discussed, allowing the development of a correlation able to describe the carbon dioxide solubility in low volatile solvents. Furthermore, the non ideality of solutions of light compounds, such as SO2, NH3 and H2S, in ionic liquids is also investigated and shown to present negative deviations to the ideality in the liquid phase, that can be predicted by the Flory-Huggins model. For last, the effect of the ionic liquid polarity, described through the Kamlet-Taft parameters, on the CO2/CH4 and H2S/CH4 selectivities is also evaluated and shown to stand as a viable tool for the selection of ionic liquids with enhanced selectivities.
Resumo:
The main objective of this work was to monitor a set of physical-chemical properties of heavy oil procedural streams through nuclear magnetic resonance spectroscopy, in order to propose an analysis procedure and online data processing for process control. Different statistical methods which allow to relate the results obtained by nuclear magnetic resonance spectroscopy with the results obtained by the conventional standard methods during the characterization of the different streams, have been implemented in order to develop models for predicting these same properties. The real-time knowledge of these physical-chemical properties of petroleum fractions is very important for enhancing refinery operations, ensuring technically, economically and environmentally proper refinery operations. The first part of this work involved the determination of many physical-chemical properties, at Matosinhos refinery, by following some standard methods important to evaluate and characterize light vacuum gas oil, heavy vacuum gas oil and fuel oil fractions. Kinematic viscosity, density, sulfur content, flash point, carbon residue, P-value and atmospheric and vacuum distillations were the properties analysed. Besides the analysis by using the standard methods, the same samples were analysed by nuclear magnetic resonance spectroscopy. The second part of this work was related to the application of multivariate statistical methods, which correlate the physical-chemical properties with the quantitative information acquired by nuclear magnetic resonance spectroscopy. Several methods were applied, including principal component analysis, principal component regression, partial least squares and artificial neural networks. Principal component analysis was used to reduce the number of predictive variables and to transform them into new variables, the principal components. These principal components were used as inputs of the principal component regression and artificial neural networks models. For the partial least squares model, the original data was used as input. Taking into account the performance of the develop models, by analysing selected statistical performance indexes, it was possible to conclude that principal component regression lead to worse performances. When applying the partial least squares and artificial neural networks models better results were achieved. However, it was with the artificial neural networks model that better predictions were obtained for almost of the properties analysed. With reference to the results obtained, it was possible to conclude that nuclear magnetic resonance spectroscopy combined with multivariate statistical methods can be used to predict physical-chemical properties of petroleum fractions. It has been shown that this technique can be considered a potential alternative to the conventional standard methods having obtained very promising results.
Resumo:
Desulfurization is one of the most important processes in the refining industry. Due to a growing concern about the risks to human health and environment, associated with the emissions of sulfur compounds, legislation has become more stringent, requiring a drastic reduction in the sulfur content of fuel to levels close to zero (< 10 ppm S). However, conventional desulfurization processes are inefficient and have high operating costs. This scenario stimulates the improvement of existing processes and the development of new and more efficient technologies. Aiming at overcoming these shortcomings, this work investigates an alternative desulfurization process using ionic liquids for the removal of mercaptans from "jet fuel" streams. The screening and selection of the most suitable ionic liquid were performed based on experimental and COSMO-RS predicted liquid-liquid equilibrium data. A model feed of 1-hexanethiol and n-dodecane was selected to represent a jet-fuel stream. High selectivities were determined, as a result of the low mutual solubility between the ionic liquid and the hydrocarbon matrix, proving the potential use of the ionic liquid, which prevents the loss of fuel for the solvent. The distribution ratios of mercaptans towards the ionic liquids were not as favorable, making the traditional liquid-liquid extraction processes not suitable for the removal of aliphatic S-compounds due to the high volume of extractant required. This work explores alternative methods and proposes the use of ionic liquids in a separation process assisted by membranes. In the process proposed the ionic liquid is used as extracting solvent of the sulfur species, in a hollow fiber membrane contactor, without co-extracting the other jet-fuel compound. In a second contactor, the ionic liquid is regenerated applying a sweep gas stripping, which allows for its reuse in a closed loop between the two membrane contactors. This integrated extraction/regeneration process of desulfurization produced a jet-fuel model with sulfur content lower than 2 ppm of S, as envisaged by legislation for the use of ultra-low sulfur jet-fuel. This result confirms the high potential for development of ultra-deep desulfurization application.
Resumo:
Gla-rich protein (GRP) is a vitamin K-dependent protein related to bone and cartilage recently described. This protein is characterized by a large number of Gla (γ-carboxyglutamic acid) residues being the protein with the highest Gla content of any known protein. It was found in a widely variety of tissues but highest levels was found in skeletal and cartilaginous tissues. This small secreted protein was also expressed and accumulated in soft tissues and it was clearly associated with calcification pathologies in the same tissues. Although the biological importance of GRP remains to be elucidated, it was suggested a physiological role in cartilage development and calcification process during vertebrate skeleton formation. Using zebrafish, an accepted model to study skeletal development, we have described two grp paralog genes, grp1 and grp2, which exhibited distinct patterns of expression, suggesting different regulatory pathways for each gene. Gene synteny analysis showed that grp2 gene is more closely related to tetrapod grp, although grp1 gene was proposed to be the vertebrate ortholog by sequence comparison. In addition, we identified a functional promoter of grp2 gene and using a functional approach we confirmed the involvement of transcription factors from Sox family (Sox9b and Sox10) in the regulation of grp2 expression. In an effort to provide more information about the function of grp isoforms, we generated two zebrafish transgenic lines capable to overexpress conditionally grp genes and possible roles in the skeleton development were studied. To better understand GRP function a mammalian system was used and the analysis of knockout mice showed that GRP is involved in chondrocyte maturation and the absence of GRP is associated to proteoglycans loss in calcified articular cartilage. In addition, we detected differences in chondrogenesis markers in articular chondrocyte primary culture. Overall, our data suggest a main role for GRP on chondrocyte differentiation.
Resumo:
Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Biomedicina, Universidade do Algarve, 2013
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Driver mutations in the two histone 3.3 (H3.3) genes, H3F3A and H3F3B, were recently identified by whole genome sequencing in 95% of chondroblastoma (CB) and by targeted gene sequencing in 92% of giant cell tumour of bone (GCT). Given the high prevalence of these driver mutations, it may be possible to utilise these alterations as diagnostic adjuncts in clinical practice. Here, we explored the spectrum of H3.3 mutations in a wide range and large number of bone tumours (n 5 412) to determine if these alterations could be used to distinguish GCT from other osteoclast-rich tumours such as aneurysmal bone cyst, nonossifying fibroma, giant cell granuloma, and osteoclast-rich malignant bone tumours and others. In addition, we explored the driver landscape of GCT through whole genome, exome and targeted sequencing (14 gene panel). We found that H3.3 mutations, namely mutations of glycine 34 in H3F3A, occur in 96% of GCT. We did not find additional driver mutations in GCT, including mutations in IDH1, IDH2, USP6, TP53. The genomes of GCT exhibited few somatic mutations, akin to the picture seen in CB. Overall our observations suggest that the presence of H3F3A p.Gly34 mutations does not entirely exclude malignancy in osteoclast-rich tumours. However, H3F3A p.Gly34 mutations appear to be an almost essential feature of GCT that will aid pathological evaluation of bone tumours, especially when confronted with small needle core biopsies. In the absence of H3F3A p.Gly34 mutations, a diagnosis of GCT should be made with caution.
Resumo:
This article examines John Sommerfield’s 1936 novel, May Day, a work that experiments with multiple perspectives, voices and modes. The article examines the formal experiments of the novel in order to bring into focus contemporary debates around the aesthetics of socialist realism, the politics of Popular Front anti-fascism and the relationship between writers on the left and the legacies of literary modernism. The article suggests that while leftist writers’ appropriations of modernist techniques have been noted by critics, there has been a tendency to assume that such approaches were in contravention of the aesthetics of socialist realism. Socialist realism is shown to be more a fluid and disputed concept than such readings suppose, and Sommerfield’s adaptations of modernist textual strategies are interpreted as key components of a political aesthetic directed towards the problems of alienation and social fragmentation.
Resumo:
Currently, a learning management system (LMS) plays a central role in any e-learning environment. These environments include systems to handle the pedagogic aspects of the teaching–learning process (e.g. specialized tutors, simulation games) and the academic aspects (e.g. academic management systems). Thus, the potential for interoperability is an important, although over looked, aspect of an LMS. In this paper, we make a comparative study of the interoperability level of the most relevant LMS. We start by defining an application and a specification model. For the application model, we create a basic application that acts as a tool provider for LMS integration. The specification model acts as the API that the LMS should implement to communicate with the tool provider. Based on researches, we select the Learning Tools Interoperability (LTI) from IMS. Finally, we compare the LMS interoperability level defined as the effort made to integrate the application on the study LMS.