952 resultados para Coulomb explosions
Resumo:
The electronic structure and magnetism of eskolaite are studied by using first-principles calculations where the on-site Coulomb interaction and the exchange interaction are taken into account and the LSDA+U method is used.The calculated energies of magnetic configurations are very well fitted by the Heisenberg Hamiltonian with interactions in five neighbour shells; interaction with two nearest neighbours is found to be dominant. The Neel temperature is calculated in the spin-3/2 pair-cluster approximation. It is found that the measurements are in good agreement with for the values of U and J that are close to those obtained within the constrained occupation method.The band gap is of the Mott-Hubbard type.
Resumo:
从电性和结构上论证了纳米硅薄膜中的细微晶粒(3~6nm)具有量子点(Q.D)特征.在其 电导曲线中呈现出随晶粒尺寸减小而增大的小尺寸效应.使用薄层(~20nm厚)纳米硅膜制成了隧道二极管,已在液氮温区(≈77K)在其I-V及σ-V曲线上呈现出Coulomb台阶.对实验结果做了初步分析讨论.
Resumo:
We theoretically study the electron transport through a double quantum dot (QD) in the Coulomb blockade regime and reveal the phase character of the transport by embedding the double QD in a mesoscopic Aharonov-Bohm ring. It is shown that coherent transport through the double QD is preserved in spite of intradot and interdot Coulomb interactions.
Resumo:
提出一种基于连续介质力学的块体单元离散弹簧法,并将其应用于地质体渐进破坏过程的数值模拟研究。该方法以连续介质力学的基本理论为基础,以八节点正六面体单元为离散对象,根据有限元的形函数理论及正六面体单元刚度矩阵的具体表达式,将正六面体单元离散成为12根棱弹簧,并推导各弹簧的弹簧力计算公式,给出各弹簧的弹簧力分量的物理意义、对应的弹簧刚度及相关联的位移。在弹性部分的计算结果与传统的有限元计算结果一致的基础上,在弹簧中引入Mohr-Coulomb准则及拉伸破坏准则,进行弹簧破坏的判断。如果块体内的弹簧全部断裂,便将其视为散体。在判断破坏时采用双重判断模式,块体单元的判断主要用于选取弹簧潜在的破坏面,离散弹簧的判断用于计算弹簧上的真实弹簧力。最后,通过相关算例验证引入破坏准则后所得计算结果的合理性。块体单元离散弹簧法的实质是通过12根离散弹簧将单元转化为结构,因此可以通过分析各弹簧的断裂情况研究块体的内部破坏特征,更可以通过各弹簧的先后断裂过程来研究地质体的渐进破坏过程。
Resumo:
提出一种基于连续介质力学的块体单元离散弹簧法,并将其应用于地质体渐进破坏过程的数值模拟研究。该方法以连续介质力学的基本理论为基础,以八节点正六面体单元为离散对象,根据有限元的形函数理论及正六面体单元刚度矩阵的具体表达式,将正六面体单元离散成为12根棱弹簧,并推导各弹簧的弹簧力计算公式,给出各弹簧的弹簧力分量的物理意义、对应的弹簧刚度及相关联的位移。在弹性部分的计算结果与传统的有限元计算结果一致的基础上,在弹簧中引入Mohr-Coulomb准则及拉伸破坏准则,进行弹簧破坏的判断。如果块体内的弹簧全部断裂,便将其视为散体。在判断破坏时采用双重判断模式,块体单元的判断主要用于选取弹簧潜在的破坏面,离散弹簧的判断用于计算弹簧上的真实弹簧力。最后,通过相关算例验证引入破坏准则后所得计算结果的合理性。块体单元离散弹簧法的实质是通过12根离散弹簧将单元转化为结构,因此可以通过分析各弹簧的断裂情况研究块体的内部破坏特征,更可以通过各弹簧的先后断裂过程来研究地质体的渐进破坏过程。
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the pion emission in heavy-ion collisions in the region 1AGeV is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances ∆(1232) and N∗(1440). The in-medium dependence and Coulomb effects of the pion production are included in the calculation. Total pion multiplicity and π−/π+ yields are calculated for the reaction 197Au+197Au in central collisions for selected Skyrme parameters SkP, SLy6,Ska, SIII and compared them with the measured data by the FOPI collaboration.
Resumo:
Within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model,he fusion dynamics of symmetric reaction systems are investigated systematically. Calculations show that the number of nucleon transfer in the neck region is appreciably dependent on the incident energies, but strongly on he reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions 58Ni+58Niand 64Ni+64Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of the neutron to proton in the neck region at initial collision stage is observed and obvious for the latter system, which reduces the fusion barrier of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared with the available experimental data.
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, pion emission in heavy-ion collisions in the region 1 A GeV is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The in-medium dependence and Coulomb effects of pion production are included in the calculation. Total pion multiplicity and pi(-)/pi(+) yields are calculated for the reaction Au-197+(197) Au in central collisions for selected Skyrme parameters SkP, SLy6, Ska, SIII and compared with the measured data of the FOPI collaboration.
Resumo:
Highly charged ions (HCls) carrying high Coulomb potential energy (E-p) could cause great changes in the physical and chemical properties of material surface when they bombard on the solid surface. In our work, the secondary ion yield dependence on highly charged Pbq+ (q = 4-36) bombardment on Al surface has been investigated. Aluminum films (99.99%) covered with a natural oxide film was chosen as our target and the kinetic energy (E-k) was varied between 80 keV and 400 keV. The yield with different incident angles could be described well by the equation developed by us. The equation consists of two parts due to the kinetic sputtering and potential sputtering. The physical interpretations of the coefficients in the said equation are discussed. Also the results on the kinetic sputtering produced by the nuclear energy loss on target Surface are presented.
Resumo:
The shell effect is included in the improved isospin dependent quantum molecular dynamics model in which the shell correction energy of the system is calculated by using the deformed two-center shell model. A switch function is introduced to connect the shell correction energy of the projectile and the target with that of the compound nucleus during the dynamical fusion process. It is found that the calculated capture cross sections reproduce the experimental data quantitatively at the energy near the Coulomb barrier. The capture cross sections for reaction (35) (80) Br + (82) (208) Pb -> (117) (288) X are also calculated and discussed.
Resumo:
The double ionization of helium by electron impact for 106 eV incident energy was studied in a kinematically complete experiment by using a reaction microscope. The pattern of the angular correlation of the three emitted electrons was analyzed by selecting different values of the recoil ion longitudinal momentum. The Wannier predicted geometry appears when the recoil ion carries the full initial projectile momentum. It was found that at this low impact energy, the outgoing electrons still remember the initial-state collision information.
Resumo:
Shot noise through a closed Aharonov-Bohm interferometer carrying a quantum dot in one of its two current paths is investigated. It is found that the shot noise can be modulated by the magnetic flux Phi, the dot level, and the direct tunneling. Due to the interference between the two transmission channels, the Kondo correlation manifests itself in the flux dependence of the shot noise, which exhibits oscillation behavior with a period of Phi(0)/2 (Phi(0) is the flux quantum) for small voltages below the Kondo temperature T-K. At voltages well above T-K or outside the Kondo regime, the shot noise is determined by high-energy Coulomb and hybridization processes, and its Aharonov-Bohm oscillations restore the fundamental period of Phi(0). As a result of its two-particle nature, the shot noise contains higher-order harmonics absent in the current, demonstrating the fact that the noise is more sensitive to the effects of quantum interference than the current.
Resumo:
The direct Coulomb ionization process can be generally well described by the ECPSSR theory, which bases on the perturbed-stationary- state(PSS) and accounts for the energy-loss, Coulomb-deflection, and relativistic effects. But the ECPSSR calculation has significant deviations for heavy projectile at low impinging energies. In this paper we propose a new modified ECPSSR theory, i.e. MECUSAR, in which PSS is replaced by an united and separated atom model, and molecule-orbit effect is considered. The MECUSAR calculations give better agreement with the experimental data at lower impinging energies, and agree with the ECPSSR calculations at high energies. By using OBKN (Oppenheimer-Brinkman-Kramers formulas of Nikolaev) theory to describe the contribution of the electron capture, we further modified the proposed MECUSAR theory, and calculated the target ionization cross sections for different charge states of the projectile.
Resumo:
The relative partial cross sections for C-13(6+)-Ar collisions at 4.15-11.08 keV/u incident energy are measured. The cross-section ratios sigma(2E)/sigma(SC), sigma(3E)/sigma(SC), sigma(4E)/sigma(SC) and sigma(5E)/sigma(SC) are approximately the constants of 0.51 +/- 0.05, 0.20 +/- 0.03, 0.06 +/- 0.03 and 0.02 +/- 0.01 in this region. The significance of the multi-electron process in highly charged ions (HCIs) with argon collisions is demonstrated (sigma(ME)/sigma(SC) as high as 0.79 +/- 0.06). In multi-electron processes, it is shown that transfer ionization is dominant while pure electron capture is weak and negligible. For all reaction channels, the cross-sections are independent of the incident energy in the present energy region, which is in agreement with the static characteristic of classic models, i.e. the molecular Coulomb over-the-barrier model (MCBM), the extended classical over-the-barrier (ECBM) and the semiempirical scaling laws (SL). The result is compared with these classical models and with our previous work of C-13(6+)-Ne collisions
Resumo:
The reduced velocity correlation functions of the Intermediate Mass Fragments (IMFs) were measured in the reactions of Ar-36+ Sn-112,Sn-124 at 35MeV/u. The anti-correlation at small reduced velocities is more pronounced in Ar-36+ Sn-124 system than that in Ar-36+ Sn-112 system. The difference of the correlation functions between the two reactions is mainly contributed by the particle pairs with high momenta. A three-body Coulomb repulsive trajectory code (MENEKA) is employed to calculate the emission time scale of IMFs for-the both systems. The time scale is 150fm/c in the Ar-36+ Sn-112 system and 120fm/c in the Ar-36+ Sn-124 system, respectively. A calculation based on an Isospin dependence Quantum Molecular Dynamics code (IQMD) reveals that the emission time spectrum of IMFs is shifted slightly leftwards in Ar-36+ Sn-124 compared with that in the Ar-16+ Sn-112 system, indicating a shorter emission time scale. Correspondingly, the central density of the hot nuclei decreases faster in Ar-36+ Sn-124 than in Ar-36+ Sn-112