926 resultados para Continuous wave lasers
Resumo:
The threshold current densities and voltage tensions (body voltages) between the head and tail for bringing about distinct reactions in Salmo irideus, Cyprinus Carpio, Tinea tinca, Gasterosteus aculeatus and Salmo fario were studied. In C. carpio and T. tinca, absolute current densities required decreased with increase in length of fish. Threshold current densities for different reactions of fish increased with rise in water temperature and conductivity of surrounding medium except in case of T. tinca where low current densities were sufficient in higher conductivity of water. Impulse D.C. was superior to continuous D.C. Better effect was noticed in fishes in lower current densities when their bodies were parallel to the lines of current conduction.
Resumo:
Liquid crystal lasers offer wide, continuous tuneability across the visible and near-infrared (450-850 nm). Compared to conventional tuneable laser technology, liquid crystal lasers are highly compact and have simple and scalable manufacturability. Their ability to emit multiple simultaneous emissions of arbitrarily selectable wavelength also gives them functional advantages over competing technologies. This paper describes Förster transfer techniques that have enabled this extended continuously tunable emission range, whilst maintaining a common pump source. © 2012 OSA.
Resumo:
Smooth and continuous ZnO films consisting of densely packed ZnO nanorods (NRs), which can be used for electronic device fabrication, were synthesized using a hydro-thermo-chemical solution deposition method. Such devices would have the novelty of high performance, benefiting from the inherited unique properties of the nanomaterials, and can be fabricated on these smooth films using a conventional, low cost planar process. Photoluminescence measurements showed that the NR films have much stronger shallow donor to valence band emissions than those from discrete ZnO NRs, and hence have the potential for the development of ZnO light emission diodes and lasers, etc. The NR films have been used to fabricate large area surface acoustic wave devices by conventional photolithography. These demonstrated two well-defined resonant peaks and their potential for large area device applications. The chemical solution deposition method is simple, reproducible, scalable and economic. These NR films are suitable for large scale production on cost-effective substrates and are promising for various fields such as sensing systems, renewable energy and optoelectronic applications.
Resumo:
We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © 2012 OSA.
Resumo:
FM mode-locking in monolithic semiconductor lasers is investigated for the first time, using a travelling-wave laser model. The effects of phase modulation depth and non-zero alpha factor on pulse quality and pulse-width are discussed. © 2004 Optical Society of America.
Resumo:
FM mode-locking in monolithic semiconductor lasers is investigated for the first time, using a travelling-wave laser model. The effects of phase modulation depth and non-zero alpha factor on pulse quality and pulse-width are discussed. © 2004 Optical Society of America.
Resumo:
In this paper, the spectral relation between the master and the frequency-locked slave laser (FLSL) is investigated by the conventional technique of optical intensity modulation and optical heterodyne. Experimentally, we demonstrate that under complete and stable locking condition, the lightwave of the FLSL and the sidebands of the master laser produced by the optical intensity modulation are perfectly coherent (frequency coherence). Referring to our recent studies, the lightwave of the master laser and its corresponding sidebands are also perfectly coherent. Additionally, the spectral structures of two perfectly coherent lightwaves are identical in the level of wave train. Therefore, we indirectly verify that the spectral structures of the FLSL and the master laser are identical in the level of wave train.
Resumo:
A new device of two parallel distributed feedback ( DFB) laser integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB lasers in parallel, which had a small difference in frequency. Continuous rapidly tunable optical microwave signals from 13 GHz to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.
Resumo:
From the effective absorption coefficient of bonded interface and the relationship of interface to reflectivity at cavity mode for double bonded vertical cavity laser, it can be seen that bonded interfaces should be positioned at the null of standing wave distribution, and the thickness of interface should be less than 20 nm. Using the finite elements method, the temperature contour map of laser can be calculated. Results showed that the influence of thin interface to thermal characteristics of VCSELS is slight, while thick interface will lead to temperature increase of active region. SEM images demonstrate that hydrophobic bonding is suitable for the fabrication of the device, while hydrophilic bonding interface is unfavorable to optical and thermal properties of devices with interface thickness larger than 40 nm.
Resumo:
We designed a two-dimensional coupled photonic crystal resonator array with hexagonal lattice. The calculation by plane-wave-expansion method shows that the dispersion curve of coupled cavity modes in the bandgap are much flattened in all directions in the reciprocal space. We simulated the transmission spectra of transverse electric (TE) wave along the Gamma K direction. Compared with the PC single cavity structure, the transmission ratio of the coupled cavity array increases more than three orders of magnitude, while the group velocity decreases to below 1/10, reaching 0.007c. The slow wave effect has potential application in the field of miniaturized tunable optical delay components and low-threshold photonic crystal lasers.
Resumo:
In this paper, we propose an interference technique that can provide a quantitative and ultrafine-resolution spectral analysis because the optical heterodyning is performed at nonzero frequency and interfering waves propagate in optical fiber. The spectrum of a laser consists of a large number of wave trains. Our study is focused on the features of wave trains. We demonstrate that wave trains emitting simultaneously have random frequency spacings, and the probability of occurrence of two or more joint wave trains with the same frequency is high. The estimated linewidth of the wave train is narrower than 1 mHz, corresponding to a wavelength range of 10(-23) m.
Resumo:
A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9 kA/cm(2) and a slope efficiency of 0.02 W/A. The 1542 nm laser output exits mainly from the Si waveguide.
Resumo:
A new device of two parallel distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB laser in parallel, which had a small difference in frequency. Continuous rapid tuning of optical microwave signal from 13 to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.
Resumo:
Rapid thermal annealing (RTA) has been demonstrated as an effective way to improve the crystal quality of GaInNAs(Sb) quantum wells (QWs). However, few investigations have been made into its application in laser growth and fabrication. We have fabricated 1.3 mu m GaInNAs lasers, both as -grown and with post-growth RTA. Enhanced photoluminescence (PL) intensity and decreased threshold current are obtained with RTA, but the characteristic temperature T-o and slope efficiency deteriorate. Furthermore, T-o has an abnormal dependence on the cavity length. We attribute these problems to the deterioration of the wafer's surface. RTA with deposition Of SiO2 was performed to avoid this deterioration, T-o was improved over the samples that underwent RTA without SiO2. Post-growth and in situ annealing were also investigated in a 1.55 mu m GaInNAsSb system. Finally, continuous operation at room temperature of a GaAs-based dilute nitride laser with a wavelength over 1.55 mu m was realized by introducing an in situ annealing process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coupling coefficient is an important parameter for distributed feedback lasers. Modified coupled-wave equations are used to calculate the effect of grating shape on coupling coefficient of the second-order gratings. Corresponding devices demonstrate that the maximum kink-free power per facet reaches 50 mW and the sidemode suppression ratio is 36 dB.