903 resultados para Computer vision industry
Resumo:
Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.
Resumo:
Dynamic texture is a recent field of investigation that has received growing attention from computer vision community in the last years. These patterns are moving texture in which the concept of selfsimilarity for static textures is extended to the spatiotemporal domain. In this paper, we propose a novel approach for dynamic texture representation, that can be used for both texture analysis and segmentation. In this method, deterministic partially self-avoiding walks are performed in three orthogonal planes of the video in order to combine appearance and motion features. We validate our method on three applications of dynamic texture that present interesting challenges: recognition, clustering and segmentation. Experimental results on these applications indicate that the proposed method improves the dynamic texture representation compared to the state of the art.
Resumo:
[ES] Los erizos de mar han servido como modelo prototípico de organismo en el desarrollo de la Biología. La irrupción de este animal como especie invasora en los fondos canarios, combinada con el éxito reproductivo que ha tenido en nuestras aguas, ha creado un problema medioambiental importante que se ha intentado atajar con la puesta en marcha de proyectos e iniciativas orientados a su erradicación (matanzas masivas) o su contención con intentos de estimular su explotación comercial para uso gastronómico. En el transcurso de este trabajo se pretende explorar la robustez con la que se pueden clasificar visualmente diferentes tipos de erizos (principalmente Diadema antillarumy y Erizos autóctonos) a partir tanto de imágenes estáticas como de secuencias de vídeo para evaluar si, mediante el empleo de técnicas de visión por computador, es posible resolver estas tareas mediante la inspección automática de vídeos e imágenes.
Resumo:
[EN] In this work we propose a new variational model for the consistent estimation of motion fields. The aim of this work is to develop appropriate spatio-temporal coherence models. In this sense, we propose two main contributions: a nonlinear flow constancy assumption, similar in spirit to the nonlinear brightness constancy assumption, which conveniently relates flow fields at different time instants; and a nonlinear temporal regularization scheme, which complements the spatial regularization and can cope with piecewise continuous motion fields. These contributions pose a congruent variational model since all the energy terms, except the spatial regularization, are based on nonlinear warpings of the flow field. This model is more general than its spatial counterpart, provides more accurate solutions and preserves the continuity of optical flows in time. In the experimental results, we show that the method attains better results and, in particular, it considerably improves the accuracy in the presence of large displacements.
Resumo:
[EN] The aim of this work is to propose a new method for estimating the backward flow directly from the optical flow. We assume that the optical flow has already been computed and we need to estimate the inverse mapping. This mapping is not bijective due to the presence of occlusions and disocclusions, therefore it is not possible to estimate the inverse function in the whole domain. Values in these regions has to be guessed from the available information. We propose an accurate algorithm to calculate the backward flow uniquely from the optical flow, using a simple relation. Occlusions are filled by selecting the maximum motion and disocclusions are filled with two different strategies: a min-fill strategy, which fills each disoccluded region with the minimum value around the region; and a restricted min-fill approach that selects the minimum value in a close neighborhood. In the experimental results, we show the accuracy of the method and compare the results using these two strategies.
Resumo:
[EN] In this paper we study a variational problem derived from a computer vision application: video camera calibration with smoothing constraint. By video camera calibration we meanto estimate the location, orientation and lens zoom-setting of the camera for each video frame taking into account image visible features. To simplify the problem we assume that the camera is mounted on a tripod, in such case, for each frame captured at time t , the calibration is provided by 3 parameters : (1) P(t) (PAN) which represents the tripod vertical axis rotation, (2) T(t) (TILT) which represents the tripod horizontal axis rotation and (3) Z(t) (CAMERA ZOOM) the camera lens zoom setting. The calibration function t -> u(t) = (P(t),T(t),Z(t)) is obtained as the minima of an energy function I[u] . In thIs paper we study the existence of minima of such energy function as well as the solutions of the associated Euler-Lagrange equations.
Resumo:
[EN] In this paper we present a variational technique for the reconstruction of 3D cylindrical surfaces. Roughly speaking by a cylindrical surface we mean a surface that can be parameterized using the projection on a cylinder in terms of two coordinates, representing the displacement and angle in a cylindrical coordinate system respectively. The starting point for our method is a set of different views of a cylindrical surface, as well as a precomputed disparity map estimation between pair of images. The proposed variational technique is based on an energy minimization where we balance on the one hand the regularity of the cylindrical function given by the distance of the surface points to cylinder axis, and on the other hand, the distance between the projection of the surface points on the images and the expected location following the precomputed disparity map estimation between pair of images. One interesting advantage of this approach is that we regularize the 3D surface by means of a bi-dimensio al minimization problem. We show some experimental results for large stereo sequences.
Resumo:
[EN] In this report we study a number of fluid optic flow sequences in the context of the FLUID Specific Targeted Research Project - Contract No 513633 founded by the EEC. The main goal of this report is to analyse the behaviour of classical computer vision optic flow techniques when we deal with fluid sequences. We use the optic flow sequences provided by other partners of the FLUID project.
Resumo:
[EN] In this paper we present some real problems which appear in computer vision which yields to nonlinear system of algebraic equations. We study the problem of camera calibration. Roughly speaking camera calibration consists in looking at the camera position in the 3- D world using as information the projection of a 3- D Scene in a 2-D plane (the photogram). The problem is quite different when we use a single view or several views (stereo vision) of the 3-D scene. We will show in this paper how these problems yields to nonlinear algebraic system of equations.
Resumo:
[EN] In the last years we have developed some methods for 3D reconstruction. First we began with the problem of reconstructing a 3D scene from a stereoscopic pair of images. We developed some methods based on energy functionals which produce dense disparity maps by preserving discontinuities from image boundaries. Then we passed to the problem of reconstructing a 3D scene from multiple views (more than 2). The method for multiple view reconstruction relies on the method for stereoscopic reconstruction. For every pair of consecutive images we estimate a disparity map and then we apply a robust method that searches for good correspondences through the sequence of images. Recently we have proposed several methods for 3D surface regularization. This is a postprocessing step necessary for smoothing the final surface, which could be afected by noise or mismatch correspondences. These regularization methods are interesting because they use the information from the reconstructing process and not only from the 3D surface. We have tackled all these problems from an energy minimization approach. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method.
Resumo:
Permitida la difusión del código bajo los términos de la licencia BSD de tres cláusulas.
Resumo:
[EN]In this paper, we address the challenge of gender classi - cation using large databases of images with two goals. The rst objective is to evaluate whether the error rate decreases compared to smaller databases. The second goal is to determine if the classi er that provides the best classi cation rate for one database, improves the classi cation results for other databases, that is, the cross-database performance.
Resumo:
[EN]In this paper, we experimentally study the combination of face and facial feature detectors to improve face detection performance. The face detection problem, as suggeted by recent face detection challenges, is still not solved. Face detectors traditionally fail in large-scale problems and/or when the face is occluded or di erent head rotations are present. The combination of face and facial feature detectors is evaluated with a public database. The obtained results evidence an improvement in the positive detection rate while reducing the false detection rate. Additionally, we prove that the integration of facial feature detectors provides useful information for pose estimation and face alignment.
Resumo:
[EN]In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Diff erent descriptors, resolutions and classfii ers are studied, overcoming previous literature results, reaching an accuracy of 89.8%.