825 resultados para Computación Efímera
Resumo:
El proyecto consiste en analizar los problemas de las librerías MVC (Model-View-Controller) existentes y que se usan para el desarrollo de servicios web, evaluando las características y aplicabilidad de las nuevas librerías que han aparecido. Se realizará una evaluación de las distintas librerías JavaScript y se compararán con las emergentes identificando qué problemas resuelven. Se estudiarán las características, las ventajas, así como las tecnologías que podemos encontrar alrededor de React y Flux ilustrándolas con un ejemplo sencillo. Finalmente, se ilustrará mediante un ejemplo práctico como funcionan estas tecnologías en una versión simplificada del proyecto Quiz de la asignatura Computación en Red concluyendo que ventajas e inconvenientes presenta en una aplicación real.
Resumo:
In this work a p-adaptation (modification of the polynomial order) strategy based on the minimization of the truncation error is developed for high order discontinuous Galerkin methods. The truncation error is approximated by means of a truncation error estimation procedure and enables the identification of mesh regions that require adaptation. Three truncation error estimation approaches are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. Fine solutions, which are obtained by enriching the polynomial order, are required to solve the numerical problem with adequate accuracy. For the three truncation error estimation methods the former needs time converged solutions, while the last two rely on non-converged solutions, which lead to faster computations. Based on these truncation error estimation methods, algorithms for mesh adaptation were designed and tested. Firstly, an isotropic adaptation approach is presented, which leads to equally distributed polynomial orders in different coordinate directions. This first implementation is improved by incorporating a method to extrapolate the truncation error. This results in a significant reduction of computational cost. Secondly, the employed high order method permits the spatial decoupling of the estimated errors and enables anisotropic p-adaptation. The incorporation of anisotropic features leads to meshes with different polynomial orders in the different coordinate directions such that flow-features related to the geometry are resolved in a better manner. These adaptations result in a significant reduction of degrees of freedom and computational cost, while the amount of improvement depends on the test-case. Finally, this anisotropic approach is extended by using error extrapolation which leads to an even higher reduction in computational cost. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. The main result is that the two quasi-a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of a factor of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively. RESUMEN En este trabajo se ha desarrollado una estrategia de adaptación-p (modificación del orden polinómico) para métodos Galerkin discontinuo de alto orden basada en la minimización del error de truncación. El error de truncación se estima utilizando el método tau-estimation. El estimador permite la identificación de zonas de la malla que requieren adaptación. Se distinguen tres técnicas de estimación: a posteriori, quasi a priori y quasi a priori con correción. Todas las estrategias requieren una solución obtenida en una malla fina, la cual es obtenida aumentando de manera uniforme el orden polinómico. Sin embargo, mientras que el primero requiere que esta solución esté convergida temporalmente, el resto utiliza soluciones no convergidas, lo que se traduce en un menor coste computacional. En este trabajo se han diseñado y probado algoritmos de adaptación de malla basados en métodos tau-estimation. En primer lugar, se presenta un algoritmo de adaptacin isótropo, que conduce a discretizaciones con el mismo orden polinómico en todas las direcciones espaciales. Esta primera implementación se mejora incluyendo un método para extrapolar el error de truncación. Esto resulta en una reducción significativa del coste computacional. En segundo lugar, el método de alto orden permite el desacoplamiento espacial de los errores estimados, permitiendo la adaptación anisotropica. Las mallas obtenidas mediante esta técnica tienen distintos órdenes polinómicos en cada una de las direcciones espaciales. La malla final tiene una distribución óptima de órdenes polinómicos, los cuales guardan relación con las características del flujo que, a su vez, depenen de la geometría. Estas técnicas de adaptación reducen de manera significativa los grados de libertad y el coste computacional. Por último, esta aproximación anisotropica se extiende usando extrapolación del error de truncación, lo que conlleva un coste computational aún menor. Las estrategias se verifican y se comparan en téminors de precisión y coste computacional utilizando las ecuaciones de Euler y Navier Stokes. Los dos métodos quasi a priori consiguen una reducción significativa del coste computacional en comparación con aumento uniforme del orden polinómico. En concreto, para una capa límite viscosa, obtenemos una mejora en tiempo de computación de 6.6 y 7.6 respectivamente, para las aproximaciones quasi-a priori y quasi-a priori con corrección.
Resumo:
El uso de aritmética de punto fijo es una opción de diseño muy extendida en sistemas con fuertes restricciones de área, consumo o rendimiento. Para producir implementaciones donde los costes se minimicen sin impactar negativamente en la precisión de los resultados debemos llevar a cabo una asignación cuidadosa de anchuras de palabra. Encontrar la combinación óptima de anchuras de palabra en coma fija para un sistema dado es un problema combinatorio NP-hard al que los diseñadores dedican entre el 25 y el 50 % del ciclo de diseño. Las plataformas hardware reconfigurables, como son las FPGAs, también se benefician de las ventajas que ofrece la aritmética de coma fija, ya que éstas compensan las frecuencias de reloj más bajas y el uso más ineficiente del hardware que hacen estas plataformas respecto a los ASICs. A medida que las FPGAs se popularizan para su uso en computación científica los diseños aumentan de tamaño y complejidad hasta llegar al punto en que no pueden ser manejados eficientemente por las técnicas actuales de modelado de señal y ruido de cuantificación y de optimización de anchura de palabra. En esta Tesis Doctoral exploramos distintos aspectos del problema de la cuantificación y presentamos nuevas metodologías para cada uno de ellos: Las técnicas basadas en extensiones de intervalos han permitido obtener modelos de propagación de señal y ruido de cuantificación muy precisos en sistemas con operaciones no lineales. Nosotros llevamos esta aproximación un paso más allá introduciendo elementos de Multi-Element Generalized Polynomial Chaos (ME-gPC) y combinándolos con una técnica moderna basada en Modified Affine Arithmetic (MAA) estadístico para así modelar sistemas que contienen estructuras de control de flujo. Nuestra metodología genera los distintos caminos de ejecución automáticamente, determina las regiones del dominio de entrada que ejercitarán cada uno de ellos y extrae los momentos estadísticos del sistema a partir de dichas soluciones parciales. Utilizamos esta técnica para estimar tanto el rango dinámico como el ruido de redondeo en sistemas con las ya mencionadas estructuras de control de flujo y mostramos la precisión de nuestra aproximación, que en determinados casos de uso con operadores no lineales llega a tener tan solo una desviación del 0.04% con respecto a los valores de referencia obtenidos mediante simulación. Un inconveniente conocido de las técnicas basadas en extensiones de intervalos es la explosión combinacional de términos a medida que el tamaño de los sistemas a estudiar crece, lo cual conlleva problemas de escalabilidad. Para afrontar este problema presen tamos una técnica de inyección de ruidos agrupados que hace grupos con las señales del sistema, introduce las fuentes de ruido para cada uno de los grupos por separado y finalmente combina los resultados de cada uno de ellos. De esta forma, el número de fuentes de ruido queda controlado en cada momento y, debido a ello, la explosión combinatoria se minimiza. También presentamos un algoritmo de particionado multi-vía destinado a minimizar la desviación de los resultados a causa de la pérdida de correlación entre términos de ruido con el objetivo de mantener los resultados tan precisos como sea posible. La presente Tesis Doctoral también aborda el desarrollo de metodologías de optimización de anchura de palabra basadas en simulaciones de Monte-Cario que se ejecuten en tiempos razonables. Para ello presentamos dos nuevas técnicas que exploran la reducción del tiempo de ejecución desde distintos ángulos: En primer lugar, el método interpolativo aplica un interpolador sencillo pero preciso para estimar la sensibilidad de cada señal, y que es usado después durante la etapa de optimización. En segundo lugar, el método incremental gira en torno al hecho de que, aunque es estrictamente necesario mantener un intervalo de confianza dado para los resultados finales de nuestra búsqueda, podemos emplear niveles de confianza más relajados, lo cual deriva en un menor número de pruebas por simulación, en las etapas iniciales de la búsqueda, cuando todavía estamos lejos de las soluciones optimizadas. Mediante estas dos aproximaciones demostramos que podemos acelerar el tiempo de ejecución de los algoritmos clásicos de búsqueda voraz en factores de hasta x240 para problemas de tamaño pequeño/mediano. Finalmente, este libro presenta HOPLITE, una infraestructura de cuantificación automatizada, flexible y modular que incluye la implementación de las técnicas anteriores y se proporciona de forma pública. Su objetivo es ofrecer a desabolladores e investigadores un entorno común para prototipar y verificar nuevas metodologías de cuantificación de forma sencilla. Describimos el flujo de trabajo, justificamos las decisiones de diseño tomadas, explicamos su API pública y hacemos una demostración paso a paso de su funcionamiento. Además mostramos, a través de un ejemplo sencillo, la forma en que conectar nuevas extensiones a la herramienta con las interfaces ya existentes para poder así expandir y mejorar las capacidades de HOPLITE. ABSTRACT Using fixed-point arithmetic is one of the most common design choices for systems where area, power or throughput are heavily constrained. In order to produce implementations where the cost is minimized without negatively impacting the accuracy of the results, a careful assignment of word-lengths is required. The problem of finding the optimal combination of fixed-point word-lengths for a given system is a combinatorial NP-hard problem to which developers devote between 25 and 50% of the design-cycle time. Reconfigurable hardware platforms such as FPGAs also benefit of the advantages of fixed-point arithmetic, as it compensates for the slower clock frequencies and less efficient area utilization of the hardware platform with respect to ASICs. As FPGAs become commonly used for scientific computation, designs constantly grow larger and more complex, up to the point where they cannot be handled efficiently by current signal and quantization noise modelling and word-length optimization methodologies. In this Ph.D. Thesis we explore different aspects of the quantization problem and we present new methodologies for each of them: The techniques based on extensions of intervals have allowed to obtain accurate models of the signal and quantization noise propagation in systems with non-linear operations. We take this approach a step further by introducing elements of MultiElement Generalized Polynomial Chaos (ME-gPC) and combining them with an stateof- the-art Statistical Modified Affine Arithmetic (MAA) based methodology in order to model systems that contain control-flow structures. Our methodology produces the different execution paths automatically, determines the regions of the input domain that will exercise them, and extracts the system statistical moments from the partial results. We use this technique to estimate both the dynamic range and the round-off noise in systems with the aforementioned control-flow structures. We show the good accuracy of our approach, which in some case studies with non-linear operators shows a 0.04 % deviation respect to the simulation-based reference values. A known drawback of the techniques based on extensions of intervals is the combinatorial explosion of terms as the size of the targeted systems grows, which leads to scalability problems. To address this issue we present a clustered noise injection technique that groups the signals in the system, introduces the noise terms in each group independently and then combines the results at the end. In this way, the number of noise sources in the system at a given time is controlled and, because of this, the combinato rial explosion is minimized. We also present a multi-way partitioning algorithm aimed at minimizing the deviation of the results due to the loss of correlation between noise terms, in order to keep the results as accurate as possible. This Ph.D. Thesis also covers the development of methodologies for word-length optimization based on Monte-Carlo simulations in reasonable times. We do so by presenting two novel techniques that explore the reduction of the execution times approaching the problem in two different ways: First, the interpolative method applies a simple but precise interpolator to estimate the sensitivity of each signal, which is later used to guide the optimization effort. Second, the incremental method revolves on the fact that, although we strictly need to guarantee a certain confidence level in the simulations for the final results of the optimization process, we can do it with more relaxed levels, which in turn implies using a considerably smaller amount of samples, in the initial stages of the process, when we are still far from the optimized solution. Through these two approaches we demonstrate that the execution time of classical greedy techniques can be accelerated by factors of up to ×240 for small/medium sized problems. Finally, this book introduces HOPLITE, an automated, flexible and modular framework for quantization that includes the implementation of the previous techniques and is provided for public access. The aim is to offer a common ground for developers and researches for prototyping and verifying new techniques for system modelling and word-length optimization easily. We describe its work flow, justifying the taken design decisions, explain its public API and we do a step-by-step demonstration of its execution. We also show, through an example, the way new extensions to the flow should be connected to the existing interfaces in order to expand and improve the capabilities of HOPLITE.
Resumo:
La evolución de los teléfonos móviles inteligentes, dotados de cámaras digitales, está provocando una creciente demanda de aplicaciones cada vez más complejas que necesitan algoritmos de visión artificial en tiempo real; puesto que el tamaño de las señales de vídeo no hace sino aumentar y en cambio el rendimiento de los procesadores de un solo núcleo se ha estancado, los nuevos algoritmos que se diseñen para visión artificial han de ser paralelos para poder ejecutarse en múltiples procesadores y ser computacionalmente escalables. Una de las clases de procesadores más interesantes en la actualidad se encuentra en las tarjetas gráficas (GPU), que son dispositivos que ofrecen un alto grado de paralelismo, un excelente rendimiento numérico y una creciente versatilidad, lo que los hace interesantes para llevar a cabo computación científica. En esta tesis se exploran dos aplicaciones de visión artificial que revisten una gran complejidad computacional y no pueden ser ejecutadas en tiempo real empleando procesadores tradicionales. En cambio, como se demuestra en esta tesis, la paralelización de las distintas subtareas y su implementación sobre una GPU arrojan los resultados deseados de ejecución con tasas de refresco interactivas. Asimismo, se propone una técnica para la evaluación rápida de funciones de complejidad arbitraria especialmente indicada para su uso en una GPU. En primer lugar se estudia la aplicación de técnicas de síntesis de imágenes virtuales a partir de únicamente dos cámaras lejanas y no paralelas—en contraste con la configuración habitual en TV 3D de cámaras cercanas y paralelas—con información de color y profundidad. Empleando filtros de mediana modificados para la elaboración de un mapa de profundidad virtual y proyecciones inversas, se comprueba que estas técnicas son adecuadas para una libre elección del punto de vista. Además, se demuestra que la codificación de la información de profundidad con respecto a un sistema de referencia global es sumamente perjudicial y debería ser evitada. Por otro lado se propone un sistema de detección de objetos móviles basado en técnicas de estimación de densidad con funciones locales. Este tipo de técnicas es muy adecuada para el modelado de escenas complejas con fondos multimodales, pero ha recibido poco uso debido a su gran complejidad computacional. El sistema propuesto, implementado en tiempo real sobre una GPU, incluye propuestas para la estimación dinámica de los anchos de banda de las funciones locales, actualización selectiva del modelo de fondo, actualización de la posición de las muestras de referencia del modelo de primer plano empleando un filtro de partículas multirregión y selección automática de regiones de interés para reducir el coste computacional. Los resultados, evaluados sobre diversas bases de datos y comparados con otros algoritmos del estado del arte, demuestran la gran versatilidad y calidad de la propuesta. Finalmente se propone un método para la aproximación de funciones arbitrarias empleando funciones continuas lineales a tramos, especialmente indicada para su implementación en una GPU mediante el uso de las unidades de filtraje de texturas, normalmente no utilizadas para cómputo numérico. La propuesta incluye un riguroso análisis matemático del error cometido en la aproximación en función del número de muestras empleadas, así como un método para la obtención de una partición cuasióptima del dominio de la función para minimizar el error. ABSTRACT The evolution of smartphones, all equipped with digital cameras, is driving a growing demand for ever more complex applications that need to rely on real-time computer vision algorithms. However, video signals are only increasing in size, whereas the performance of single-core processors has somewhat stagnated in the past few years. Consequently, new computer vision algorithms will need to be parallel to run on multiple processors and be computationally scalable. One of the most promising classes of processors nowadays can be found in graphics processing units (GPU). These are devices offering a high parallelism degree, excellent numerical performance and increasing versatility, which makes them interesting to run scientific computations. In this thesis, we explore two computer vision applications with a high computational complexity that precludes them from running in real time on traditional uniprocessors. However, we show that by parallelizing subtasks and implementing them on a GPU, both applications attain their goals of running at interactive frame rates. In addition, we propose a technique for fast evaluation of arbitrarily complex functions, specially designed for GPU implementation. First, we explore the application of depth-image–based rendering techniques to the unusual configuration of two convergent, wide baseline cameras, in contrast to the usual configuration used in 3D TV, which are narrow baseline, parallel cameras. By using a backward mapping approach with a depth inpainting scheme based on median filters, we show that these techniques are adequate for free viewpoint video applications. In addition, we show that referring depth information to a global reference system is ill-advised and should be avoided. Then, we propose a background subtraction system based on kernel density estimation techniques. These techniques are very adequate for modelling complex scenes featuring multimodal backgrounds, but have not been so popular due to their huge computational and memory complexity. The proposed system, implemented in real time on a GPU, features novel proposals for dynamic kernel bandwidth estimation for the background model, selective update of the background model, update of the position of reference samples of the foreground model using a multi-region particle filter, and automatic selection of regions of interest to reduce computational cost. The results, evaluated on several databases and compared to other state-of-the-art algorithms, demonstrate the high quality and versatility of our proposal. Finally, we propose a general method for the approximation of arbitrarily complex functions using continuous piecewise linear functions, specially formulated for GPU implementation by leveraging their texture filtering units, normally unused for numerical computation. Our proposal features a rigorous mathematical analysis of the approximation error in function of the number of samples, as well as a method to obtain a suboptimal partition of the domain of the function to minimize approximation error.
Resumo:
Debido al creciente aumento del tamaño de los datos en muchos de los actuales sistemas de información, muchos de los algoritmos de recorrido de estas estructuras pierden rendimento para realizar búsquedas en estos. Debido a que la representacion de estos datos en muchos casos se realiza mediante estructuras nodo-vertice (Grafos), en el año 2009 se creó el reto Graph500. Con anterioridad, otros retos como Top500 servían para medir el rendimiento en base a la capacidad de cálculo de los sistemas, mediante tests LINPACK. En caso de Graph500 la medicion se realiza mediante la ejecución de un algoritmo de recorrido en anchura de grafos (BFS en inglés) aplicada a Grafos. El algoritmo BFS es uno de los pilares de otros muchos algoritmos utilizados en grafos como SSSP, shortest path o Betweeness centrality. Una mejora en este ayudaría a la mejora de los otros que lo utilizan. Analisis del Problema El algoritmos BFS utilizado en los sistemas de computación de alto rendimiento (HPC en ingles) es usualmente una version para sistemas distribuidos del algoritmo secuencial original. En esta versión distribuida se inicia la ejecución realizando un particionado del grafo y posteriormente cada uno de los procesadores distribuidos computará una parte y distribuirá sus resultados a los demás sistemas. Debido a que la diferencia de velocidad entre el procesamiento en cada uno de estos nodos y la transfencia de datos por la red de interconexión es muy alta (estando en desventaja la red de interconexion) han sido bastantes las aproximaciones tomadas para reducir la perdida de rendimiento al realizar transferencias. Respecto al particionado inicial del grafo, el enfoque tradicional (llamado 1D-partitioned graph en ingles) consiste en asignar a cada nodo unos vertices fijos que él procesará. Para disminuir el tráfico de datos se propuso otro particionado (2D) en el cual la distribución se haciá en base a las aristas del grafo, en vez de a los vertices. Este particionado reducía el trafico en la red en una proporcion O(NxM) a O(log(N)). Si bien han habido otros enfoques para reducir la transferecnia como: reordemaniento inicial de los vertices para añadir localidad en los nodos, o particionados dinámicos, el enfoque que se va a proponer en este trabajo va a consistir en aplicar técnicas recientes de compression de grandes sistemas de datos como Bases de datos de alto volume o motores de búsqueda en internet para comprimir los datos de las transferencias entre nodos.---ABSTRACT---The Breadth First Search (BFS) algorithm is the foundation and building block of many higher graph-based operations such as spanning trees, shortest paths and betweenness centrality. The importance of this algorithm increases each day due to it is a key requirement for many data structures which are becoming popular nowadays. These data structures turn out to be internally graph structures. When the BFS algorithm is parallelized and the data is distributed into several processors, some research shows a performance limitation introduced by the interconnection network [31]. Hence, improvements on the area of communications may benefit the global performance in this key algorithm. In this work it is presented an alternative compression mechanism. It differs with current existing methods in that it is aware of characteristics of the data which may benefit the compression. Apart from this, we will perform a other test to see how this algorithm (in a dis- tributed scenario) benefits from traditional instruction-based optimizations. Last, we will review the current supercomputing techniques and the related work being done in the area.
Resumo:
La segmentación automática del sistema fluvial con base geomorfológica puede ser una herramienta útil en la restauración de ríos. Tradicionalmente el criterio experto permitía identificar tramos fluviales homogéneos; sin embargo, existen métodos automáticos más objetivos y fiables favorecidos por avances en las técnicas de computación, en las tecnologías de sistemas de información geográfica y en la calidad de la información espacial. Se han aplicado métodos de segmentación automática a respuestas univariantes y multivariantes, basados en técnicas permutacionales y de randomnización multi-respuesta sobre variables geomorfológicas sistemáticamente extraídas con la ayuda de sistemas de información geográfica. Se muestra la utilidad de esta herramienta en distintas fases de un proyecto de restauración, como son: la caracterización del contexto geomorfológico, la diagnosis del efecto de presiones sobre el sistema y la identificación de tramos preferentes para su conservación. Las técnicas descritas se han aplicado al río Porma (Cuenca del Duero, León) regulado desde 1968.
Resumo:
La consolidación de las grandes infraestructuras para la Computación Distribuida ha resultado en una plataforma de Computación de Alta Productividad que está lista para grandes cargas de trabajo. Los mejores exponentes de este proceso son las federaciones grid actuales. Por otro lado, la Computación Cloud promete ser más flexible, utilizable, disponible y simple que la Computación Grid, cubriendo además muchas más necesidades computacionales que las requeridas para llevar a cabo cálculos distribuidos. En cualquier caso, debido al dinamismo y la heterogeneidad presente en grids y clouds, encontrar la asignación ideal de las tareas computacionales en los recursos disponibles es, por definición un problema NP-completo, y sólo se pueden encontrar soluciones subóptimas para estos entornos. Sin embargo, la caracterización de estos recursos en ambos tipos de infraestructuras es deficitaria. Los sistemas de información disponibles no proporcionan datos fiables sobre el estado de los recursos, lo cual no permite la planificación avanzada que necesitan los diferentes tipos de aplicaciones distribuidas. Durante la última década esta cuestión no ha sido resuelta para la Computación Grid y las infraestructuras cloud establecidas recientemente presentan el mismo problema. En este marco, los planificadores (brokers) sólo pueden mejorar la productividad de las ejecuciones largas, pero no proporcionan ninguna estimación de su duración. La planificación compleja ha sido abordada tradicionalmente por otras herramientas como los gestores de flujos de trabajo, los auto-planificadores o los sistemas de gestión de producción pertenecientes a ciertas comunidades de investigación. Sin embargo, el bajo rendimiento obtenido con estos mecanismos de asignación anticipada (early-binding) es notorio. Además, la diversidad en los proveedores cloud, la falta de soporte de herramientas de planificación y de interfaces de programación estandarizadas para distribuir la carga de trabajo, dificultan la portabilidad masiva de aplicaciones legadas a los entornos cloud...
Resumo:
En los últimos años hemos sido testigos de la expansión del paradigma big data a una velocidad vertiginosa. Los cambios en este campo, nos permiten ampliar las áreas a tratar; lo que a su vez implica una mayor complejidad de los sistemas software asociados a estas tareas, como sucede en sistemas de monitorización o en el Internet de las Cosas (Internet of Things). Asimismo, la necesidad de implementar programas cada vez robustos y eficientes, es decir, que permitan el cómputo de datos a mayor velocidad y de los se obtengan información relevante, ahorrando costes y tiempo, ha propiciado la necesidad cada vez mayor de herramientas que permitan evaluar estos programas. En este contexto, el presente proyecto se centra en extender la herramienta sscheck. Sscheck permite la generación de casos de prueba basados en propiedades de programas escritos en Spark y Spark Streaming. Estos lenguajes forman parte de un mismo marco de código abierto para la computación distribuida en clúster. Dado que las pruebas basadas en propiedades generan datos aleatorios, es difícil reproducir los problemas encontrados en una cierta sesion; por ello, la extensión se centrará en cargar y guardar casos de test en disco mediante el muestreo de datos desde colecciones mayores.
Resumo:
La Ciberseguridad es un campo que cada día está más presente en nuestra vida con el avance de la tecnología. Gobiernos, militares, corporaciones, instituciones financieras, hospitales y otros negocios recogen, procesan y almacenan una gran cantidad de información confidencial en sus ordenadores y transmiten estos datos a través de redes a otros ordenadores. Con el creciente volumen y la sofisticación de los Ciberataques, se requiere una atención continua para proteger los negocios sensibles y la información personal así como salvaguardar la seguridad nacional. En el futuro casi todo va a ser informático por lo que con el avance de la tecnología nuevas amenazas aparecen, más peligrosas y sofisticadas. El enfoque de nuestro proyecto es demostrar que con unos pocos conocimientos de redes, seguridad, computación en la nube y unas pocas líneas de código se puede implementar una potente herramienta de ataque que puede poner en peligro la integridad y confidencialidad de los usuarios e instituciones.
Resumo:
Robotics is a field that presents a large number of problems because it depends on a large number of disciplines, devices, technologies and tasks. Its expansion from perfectly controlled industrial environments toward open and dynamic environment presents a many new challenges, such as robots household robots or professional robots. To facilitate the rapid development of robotic systems, low cost, reusability of code, its medium and long term maintainability and robustness are required novel approaches to provide generic models and software systems who develop paradigms capable of solving these problems. For this purpose, in this paper we propose a model based on multi-agent systems inspired by the human nervous system able to transfer the control characteristics of the biological system and able to take advantage of the best properties of distributed software systems.
Resumo:
Práctica donde se debe implementar el algoritmo alfa-beta de búsqueda en juegos para calcular la mejor jugada en el juego del Otelo.
Resumo:
En esta práctica se debe resolver el problema del crucigrama: encontrar las palabras que se ajustan a los huecos del crucigrama, tanto en horizontal como en vertical.
Resumo:
En esta práctica se desarrollará el funcionamiento de un sistema experto difuso. El alumno debe desarrollar y probar un sistema experto, utilizando lógica difusa, que sea capaz de estabilizar un péndulo invertido.