416 resultados para Collimated transmittance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research consists in studying the influence of the various type of construction systems of roofs with their energy efficiency as well as on the cost benefit for the commercial buildings on the temperatures condition of the city of Natal/RN. The main goal of this research is to analyze the cost benefit of the construction systems of roofs available on the market, taking into consideration the energy efficiency of the commercial buildings artificially air conditioned in order to be used by the projectors and to be adequated to the temperatures condition of the city of Natal/RN. The method of valuation of the cost benefit of roof systems consists in six steps: Features and simulation of the reference building; Analyze of sensitivity; Analyzes, features and simulation of alternatives of roof construction systems; Analyze of the cost of implementation; Analyze of the benefits of the alternatives comparing to the base case; And finally the analyze of the cost benefit. The model type chosen as reference was stores with pre molded buildings and system of roof with fiber ciment and ceiling . The thermal results showed the influence of the roof system on the energy efficiency of the building. The Final results of the simulations of the alternatives comes to a conclusion that the absortance is the variable that presents the best cost benefit relation and the reduction on the thermal transmittance still has limitations because of the high cost

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assessment of building thermal performance is often carried out using HVAC energy consumption data, when available, or thermal comfort variables measurements, for free-running buildings. Both types of data can be determined by monitoring or computer simulation. The assessment based on thermal comfort variables is the most complex because it depends on the determination of the thermal comfort zone. For these reasons, this master thesis explores methods of building thermal performance assessment using variables of thermal comfort simulated by DesignBuilder software. The main objective is to contribute to the development of methods to support architectural decisions during the design process, and energy and sustainable rating systems. The research method consists on selecting thermal comfort methods, modeling them in electronic sheets with output charts developed to optimize the analyses, which are used to assess the simulation results of low cost house configurations. The house models consist in a base case, which are already built, and changes in thermal transmittance, absorptance, and shading. The simulation results are assessed using each thermal comfort method, to identify the sensitivity of them. The final results show the limitations of the methods, the importance of a method that considers thermal radiance and wind speed, and the contribution of the chart proposed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Tecnologia dos Alimentos, Instituto Superior de Engenharia, Universidade do Algarve, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the research was to investigate the energy performance of residential vertical buildings envelope in the hot and humid climate of Natal, capital of Rio Grande do Norte, based in the Technical Regulation of Quality for Energy Efficiency Level in Residential Buildings (RTQ -R), launched in 2010. The study pretends to contribute to the development of design strategies appropriate to the specific local climate and the increasing of energy efficiency level of the envelope. The methodological procedures included the survey in 22 (twenty two) residential buildings, the formulation of representative prototypes based on typological and constructives characters researched and the classification of the level of energy efficiency in the envelopment of these prototypes, using as a tool the prescriptive method of the RTQ-R and the parametric analyzes from assigning different values of the following variables: shape of the pavement type; distribution of housing compartments; orientation of the building; area and shading of openings; thermal transmittance, and solar absorptance of opaque materials of the frontage in order to evaluate the influence of these on the envelopment performance. The main results accomplished with this work includes the qualification of vertical residential buildings in Natal/RN; the verification of the adequacy of these buildings to local climate based from the diagnosis of the thermal energy of the envelopment performance, the identification of variables with more significant influence on the prescriptive methodology of RTQ-R and design solutions more favorable to obtain higher levels energy efficiency by this method. Finally, it was verified, that some of these solutions proved contradictory in relation to the recommendations contained in the theoretical approaches regarding environmental comfort in hot and humid weather, which indicates the need for improvement of the prescriptive method RTQ-R and further research on efficient design solutions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the optical properties of nanolayered metal-dielectric lattices. At subwavelength regimes, the periodic array of metallic nanofilms demonstrates nonlocality-induced double refraction, conventional positive and as well as negative. In particular, we report on energy-flow considerations concerning both refractive behaviors concurrently. Numerical simulations provide transmittance of individual beams in Ag-TiO2 metamaterials under different configurations. In regimes of the effective-medium theory predicting elliptic dispersion, negative refraction may be stronger than the expected positive refraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations. ^ Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves. ^ Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloidal azopolymer nanospheres assembled on a glass substrate were exposed to a single collimated laser beam. The combination of photo-fluidic elongation of the spherical colloids and light induced self-organization of the azopolymer film allows the quasiinstantaneous growth of a large amplitude surface relief grating. Pre-structuration of the sample with the nanosphere assembly supports faster creation of the spontaneous pattern. Confinement into the nanospheres provides exceptionally large modulation amplitude of the spontaneous relief. The method is amenable to any kind of photoactive azo-materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se calculó la obtención de las constantes ópticas usando el método de Wolfe. Dichas contantes: coeficiente de absorción (α), índice de refracción (n) y espesor de una película delgada (d ), son de importancia en el proceso de caracterización óptica del material. Se realizó una comparación del método del Wolfe con el método empleado por R. Swanepoel. Se desarrolló un modelo de programación no lineal con restricciones, de manera que fue posible estimar las constantes ópticas de películas delgadas semiconductoras, a partir únicamente, de datos de transmisión conocidos. Se presentó una solución al modelo de programación no lineal para programación cuadrática. Se demostró la confiabilidad del método propuesto, obteniendo valores de α = 10378.34 cm−1, n = 2.4595, d =989.71 nm y Eg = 1.39 Ev, a través de experimentos numéricos con datos de medidas de transmitancia espectral en películas delgadas de Cu3BiS3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven years (2003–2010) of measured shortwave (SW) irradiances were used to obtain estimates of the 10 min averaged effective cloud optical thickness (ECOT) and of the shortwave cloud radiative effect (CRESW) at the surface in a mid-latitude site (Évora — south of Portugal), and its seasonal variability is presented. The ECOT, obtained using transmittance measurements at 415 nm, was compared with the correspondent MODIS cloud optical thickness (MODIS COT) for non-precipitating water clouds and cloud fractions higher than 0.25. This comparison showed that the ECOT represents well the cloud optical thickness over the study area. The CRESW, determined for two SW broadband ranges (300–1100 nm; 285–2800 nm), was normalized (NCRESW) and related with the obtained ECOT. A logarithmic relation between NCRESW and ECOT was found for both SW ranges, presenting lower dispersion for overcast-sky situations than for partially cloudy-sky situations. The NCRESW efficiency (NCRESW per unit of ECOT) was also related with the ECOT for overcast-sky conditions. The relation found is parameterized by a power law function showing that NCRESW efficiency decreases as the ECOT increases, approaching one for ECOT values higher than about 50.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Plasma Focus device can confine in a small region a plasma generated during the pinch phase. When the plasma is in the pinch condition it creates an environment that produces several kinds of radiations. When the filling gas is nitrogen, a self-collimated backwardly emitted electron beam, slightly spread by the coulomb repulsion, can be considered one of the most interesting outputs. That beam can be converted into X-ray pulses able to transfer energy at an Ultra-High Dose-Rate (UH-DR), up to 1 Gy pulse-1, for clinical applications, research, or industrial purposes. The radiation fields have been studied with the PFMA-3 hosted at the University of Bologna, finding the radiation behavior at different operating conditions and working parameters for a proper tuning of this class of devices in clinical applications. The experimental outcomes have been compared with available analytical formalisms as benchmark and the scaling laws have been proposed. A set of Monte Carlo models have been built with direct and adjoint techniques for an accurate X-ray source characterization and for setting fast and reliable irradiation planning for patients. By coupling deterministic and Monte Carlo codes, a focusing lens for the charged particles has been designed for obtaining a beam suitable for applications as external radiotherapy or intra-operative radiation therapy. The radiobiological effectiveness of the UH PF DR, a FLASH source, has been evaluated by coupling different Monte Carlo codes estimating the overall level of DNA damage at the multi-cellular and tissue levels by considering the spatial variation effects as well as the radiation field characteristics. The numerical results have been correlated to the experimental outcomes. Finally, ambient dose measurements have been performed for tuning the numerical models and obtaining doses for radiation protection purposes. The PFMA-3 technology has been fully characterized toward clinical implementation and installation in a medical facility.