952 resultados para ASYMPTOTIC GIANT BRANCH


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: A giant fusiform aneurysm in the posterior cerebral artery (PCA) is rare, as is fenestration of the PCA and basilar apex variation. We describe the angiographic and surgical findings of a giant fusiform aneurysm in the P1-P2 PCA segment associated with PCA bilateral fenestration and superior cerebellar artery double origin.CLINICAL PRESENTATION: A 26-year-old woman presented with a 2-month history of visual blurring. Digital subtraction angiography showed a giant (2.5 cm) fusiform PCA aneurysm in the right P1-P2 segment. The 3-dimensional view showed a caudal fusion pattern from the upper portion of the basilar artery associated with a bilateral long fenestration of the P1 and P2 segments and superior cerebellar artery double origin.INTERVENTION: Surgical trapping of the right P1 -P2 segment, including the posterior communicating artery, was performed by a pretemporal approach. Angiograms performed 3 and 13 months after surgery showed complete aneurysm exclusion, and the PCA was permeated and filled the PCA territory. Clinical follow-up at 14 months showed the patient with no deficits and a return to normal life.CONCLUSION: To our knowledge, this is the first report of a giant fusiform aneurysm of the PCA associated with P1-P2 segment fenestration and other variations of the basilar apex (bilateral superior cerebellar artery duplication and caudal fusion). Comprehension of the embryology and anatomy of the PCA and its related vessels and branches is fundamental to the decision-making process for a PCA aneurysm, especially when parent vessel occlusion is planned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-dependent model of population growth. Our simulations show that variation in fecundity and mainly in survival has marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point dynamics. Population dynamics of C. albiceps is here compared to dynamics of Cochliomyia macellaria, C. megacephala and C. putoria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium dynamics of native and introduced blowflies is modelled using a density-dependent model of population growth that takes into account important features of the life-history in these flies. A theoretical analysis indicates that the product of maximum fecundity and survival is the primary determinant of the dynamics. Cochliomyia macellaria, a blowfly native to the Americas and the introduced Chrysomya megacephala and Chrysomya putoria, differ in their dynamics in that the first species shows a damping oscillatory behavior leading to a one-point equilibrium, whereas in the last two species population numbers show a two-point limit cycle. Simulations showed that variation in fecundity has a marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations and aperiodic behavior. Variation in survival has much less influence on the dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the management branch model where the random resources of the subsystem are given by the exponential distributions. The determinate equivalent is a block structure problem of quadratic programming. It is solved effectively by means of the decomposition method, which is based on iterative aggregation. The aggregation problem of the upper level is resolved analytically. This overcomes all difficulties concerning the large dimension of the main problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymptotic 'soliton train' solutions of integrable wave equations described by inverse scattering transform method with second-order scalar eigenvalue problem are considered. It is shown that if asymptotic solution can be presented as a modulated one-phase nonlinear periodic wavetrain, then the corresponding Baker-Akhiezer function transforms into quasiclassical eigenfunction of the linear spectral problem in weak dispersion limit for initially smooth pulses. In this quasiclassical limit the corresponding eigenvalues can be calculated with the use of the Bohr Sommerfeld quantization rule. The asymptotic distributions of solitons parameters obtained in this way specify the solution of the Whitham equations. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a collective potential derived previously on the basis of the generator coordinate method with Skyrme interactions, we obtain values for the compression modulus of Ca-40 which are in good agreement with a recently obtained experimental value. Calculated values for the compression modulus for O-16 are also given. The procedure involved in the derivation of the collective potential is briefly reviewed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymptotic soliton trains arising from a 'large and smooth' enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup-Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr-Sommerfeld quantization rule which generalizes the usual rule to the case of 'two potentials' h(0)(x) and u(0)(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u(0)(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup-Boussinesq equations with predictions of the asymptotic theory is found. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to study finite temperature effects in effective quantum electrodynamics using Weisskopf's zero-point energy method in the context of thermo, field dynamics. After a general calculation for a weak magnetic field at fixed T, the asymptotic behavior of the Euler-Kockel-Heisenberg Lagrangian density is investigated focusing on the regularization requirements in the high temperature limit. In scalar QED the same problem is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymptotic behavior of initially large and smooth pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrodinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions-intensity rho(0)(x) of the initial pulse and its initial chirp v(0)(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study the stability of hypothetical satellites of extrasolar planets. Through numerical simulations of the restricted elliptic three-body problem we found the borders of the stable regions around the secondary body. From the empirical results, we derived analytical expressions of the critical semimajor axis beyond which the satellites would not remain stable. The expressions are given as a function of the eccentricities of the planet, e(P), and of the satellite, e(sat). In the case of prograde, satellites, the critical semimajor axis, in the units of Hill's radius, is given by a(E) approximate to 0.4895 (1.0000 - 1.0305e(P) - 0.2738e(sat)). In the case of retrograde satellites, it is given by a(E) approximate to 0.9309 (1.0000 - 1.0764e(P) - 0.9812e(sat)). We also computed the satellite stability region (a(E)) for a set of extrasolar planets. The results indicate that extrasolar planets in the habitable zone could harbour the Earth-like satellites.