On asymptotic solutions of integrable wave equations


Autoria(s): Kamchatnov, A. M.; Kraenkel, Roberto André; Umarov, B. A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

27/08/2001

Resumo

Asymptotic 'soliton train' solutions of integrable wave equations described by inverse scattering transform method with second-order scalar eigenvalue problem are considered. It is shown that if asymptotic solution can be presented as a modulated one-phase nonlinear periodic wavetrain, then the corresponding Baker-Akhiezer function transforms into quasiclassical eigenfunction of the linear spectral problem in weak dispersion limit for initially smooth pulses. In this quasiclassical limit the corresponding eigenvalues can be calculated with the use of the Bohr Sommerfeld quantization rule. The asymptotic distributions of solitons parameters obtained in this way specify the solution of the Whitham equations. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Formato

223-232

Identificador

http://dx.doi.org/10.1016/S0375-9601(01)00478-9

Physics Letters A. Amsterdam: Elsevier B.V., v. 287, n. 3-4, p. 223-232, 2001.

0375-9601

http://hdl.handle.net/11449/23015

10.1016/S0375-9601(01)00478-9

WOS:000170850200008

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Physics Letters A

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article