On asymptotic solutions of integrable wave equations
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
27/08/2001
|
Resumo |
Asymptotic 'soliton train' solutions of integrable wave equations described by inverse scattering transform method with second-order scalar eigenvalue problem are considered. It is shown that if asymptotic solution can be presented as a modulated one-phase nonlinear periodic wavetrain, then the corresponding Baker-Akhiezer function transforms into quasiclassical eigenfunction of the linear spectral problem in weak dispersion limit for initially smooth pulses. In this quasiclassical limit the corresponding eigenvalues can be calculated with the use of the Bohr Sommerfeld quantization rule. The asymptotic distributions of solitons parameters obtained in this way specify the solution of the Whitham equations. (C) 2001 Elsevier B.V. B.V. All rights reserved. |
Formato |
223-232 |
Identificador |
http://dx.doi.org/10.1016/S0375-9601(01)00478-9 Physics Letters A. Amsterdam: Elsevier B.V., v. 287, n. 3-4, p. 223-232, 2001. 0375-9601 http://hdl.handle.net/11449/23015 10.1016/S0375-9601(01)00478-9 WOS:000170850200008 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Physics Letters A |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |