Existence and asymptotic behaviour for the parabolic-parabolic Keller-Segel system with singular data


Autoria(s): Ferreira, Lucas C. F.; Precioso, Juliana C.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/05/2011

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Processo FAPESP: 07/51490-7

This work considers the Keller-Segel system of parabolic-parabolic type in R(n) for n >= 2. We prove existence results in a new framework and with initial data in N(r,lambda,infinity)(-beta) x (B) over dot(infinity,infinity)(0). This initial data class is larger than the previous ones, e.g., Kozono-Sugiyama (2008 Indiana Univ. Math. J. 57 1467-500) and Biler (1998 Adv. Math. Sci. Appl. 8 715-43), and covers physical cases of initial aggregation at points (Diracs) and on filaments. Self-similar solutions are obtained for initial data with the correct homogeneity and a certain value of parameter gamma. We also show an asymptotic behaviour result, which provides a basin of attraction around each self-similar solution.

Formato

1433-1449

Identificador

http://dx.doi.org/10.1088/0951-7715/24/5/003

Nonlinearity. Bristol: Iop Publishing Ltd, v. 24, n. 5, p. 1433-1449, 2011.

0951-7715

http://hdl.handle.net/11449/22140

10.1088/0951-7715/24/5/003

WOS:000289555300003

Idioma(s)

eng

Publicador

Iop Publishing Ltd

Relação

Nonlinearity

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article