Existence and asymptotic behaviour for the parabolic-parabolic Keller-Segel system with singular data
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/05/2011
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Processo FAPESP: 07/51490-7 This work considers the Keller-Segel system of parabolic-parabolic type in R(n) for n >= 2. We prove existence results in a new framework and with initial data in N(r,lambda,infinity)(-beta) x (B) over dot(infinity,infinity)(0). This initial data class is larger than the previous ones, e.g., Kozono-Sugiyama (2008 Indiana Univ. Math. J. 57 1467-500) and Biler (1998 Adv. Math. Sci. Appl. 8 715-43), and covers physical cases of initial aggregation at points (Diracs) and on filaments. Self-similar solutions are obtained for initial data with the correct homogeneity and a certain value of parameter gamma. We also show an asymptotic behaviour result, which provides a basin of attraction around each self-similar solution. |
Formato |
1433-1449 |
Identificador |
http://dx.doi.org/10.1088/0951-7715/24/5/003 Nonlinearity. Bristol: Iop Publishing Ltd, v. 24, n. 5, p. 1433-1449, 2011. 0951-7715 http://hdl.handle.net/11449/22140 10.1088/0951-7715/24/5/003 WOS:000289555300003 |
Idioma(s) |
eng |
Publicador |
Iop Publishing Ltd |
Relação |
Nonlinearity |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |