925 resultados para probabilistic principal component analysis (probabilistic PCA)
Resumo:
Selective Estrogen Receptor Modulators ( SERMs) have been developed, but the selectivity towards the subtypes ( ER or ER is not well understood. Based on three-dimensional structural properties of ligand binding domains, a model that takes into account this aspect was developed via molecular interaction fields and consensus principal component analysis (GRID/CPCA).
Resumo:
To identify chemical descriptors to distinguish Cuban from non-Cuban rums, analyses of 44 samples of rum from 15 different countries are described. To provide the chemical descriptors, analyses of the the mineral fraction, phenolic compounds, caramel, alcohols, acetic acid, ethyl acetate, ketones, and aldehydes were carried out. The analytical data were treated through the following chemometric methods: principal component analysis (PCA), partial least square-discriminate analysis (PLS-DA), and linear discriminate analysis (LDA). These analyses indicated 23 analytes as relevant chemical descriptors for the separation of rums into two distinct groups. The possibility of clustering the rum samples investigated through PCA analysis led to an accumulative percentage of 70.4% in the first three principal components, and isoamyl alcohol, n-propyl alcohol, copper, iron, 2-furfuraldehyde (furfuraldehyde), phenylmethanal (benzaldehyde), epicatechin, and vanillin were used as chemical descriptors. By applying the PLS-DA technique to the whole set of analytical data, the following analytes have been selected as descriptors: acetone, sec-butyl alcohol, isobutyl alcohol, ethyl acetate, methanol, isoamyl alcohol, magnesium, sodium, lead, iron, manganese, copper, zinc, 4-hydroxy3,5-dimethoxybenzaldehyde (syringaldehyde), methaldehyde (formaldehyde), 5-hydroxymethyl-2furfuraldehyde (5-HMF), acetalclehyde, 2-furfuraldehyde, 2-butenal (crotonaldehyde), n-pentanal (valeraldehyde), iso-pentanal (isovaleraldehyde), benzaldehyde, 2,3-butanodione monoxime, acetylacetone, epicatechin, and vanillin. By applying the LIDA technique, a model was developed, and the following analytes were selected as descriptors: ethyl acetate, sec-butyl alcohol, n-propyl alcohol, n-butyl alcohol, isoamyl alcohol, isobutyl alcohol, caramel, catechin, vanillin, epicatechin, manganese, acetalclehyde, 4-hydroxy-3-methoxybenzoic acid, 2-butenal, 4-hydroxy-3,5-dimethoxybenzoic acid, cyclopentanone, acetone, lead, zinc, calcium, barium, strontium, and sodium. This model allowed the discrimination of Cuban rums from the others with 88.2% accuracy.
Resumo:
Molecular orbital calculations were carried out on a set of 28 non-imidazole H(3) antihistamine compounds using the Hartree-Fock method in order to investigate the possible relationships between electronic structural properties and binding affinity for H3 receptors (pK(i)). It was observed that the frontier effective-for-reaction molecular orbital (FERMO) energies were better correlated with pK(i) values than highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. Exploratory data analysis through hierarchical cluster (HCA) and principal component analysis (PCA) showed a separation of the compounds in two sets, one grouping the molecules with high pK(i) values, the other gathering low pK(i) value compounds. This separation was obtained with the use of the following descriptors: FERMO energies (epsilon(FERMO)), charges derived from the electrostatic potential on the nitrogen atom (N(1)), electronic density indexes for FERMO on the N(1) atom (Sigma((FERMO))c(i)(2)). and electrophilicity (omega`). These electronic descriptors were used to construct a quantitative structure-activity relationship (QSAR) model through the partial least-squares (PLS) method with three principal components. This model generated Q(2) = 0.88 and R(2) = 0.927 values obtained from a training set and external validation of 23 and 5 molecules, respectively. After the analysis of the PLS regression equation and the values for the selected electronic descriptors, it is suggested that high values of FERMO energies and of Sigma((FERMO))c(i)(2), together with low values of electrophilicity and pronounced negative charges on N(1) appear as desirable properties for the conception of new molecules which might have high binding affinity. 2010 Elsevier Inc. All rights reserved.
Resumo:
Chemometric methods can contribute to soil research by permitting the extraction of more information from the data. The aim of this work was to use Principal Component Analysis to evaluate data obtained through chemical and spectroscopic methods on the changes in the humification process of soil organic matter from two tropical soils after sewage sludge application. In this case, humic acids extracted from Typic Eutrorthox and Typic Haplorthox soils with and without sewage sludge application for 7 consecutive years were studied. The results obtained for all of the samples and methods showed two clusters: samples extracted from the two soil types. These expected results indicated the textural difference between the two soils was more significant than the differences between treatments (control and sewage sludge application) or between depths. In this case, an individual chemometric treatment was made for each type of soil. It was noted that the characterization of the humic acids extracted from soils with and without sewage sludge application after 7 consecutive years using several methods supplies important results about changes in the humification degree of soil organic matter, These important result obtained by Principal Component Analysis justify further research using these methods to characterize the changes in the humic acids extracted from sewage sludge-amended soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To investigate whether spirography-based objective measures are able to effectively characterize the severity of unwanted symptom states (Off and dyskinesia) and discriminate them from motor state of healthy elderly subjects. Background: Sixty-five patients with advanced Parkinson’s disease (PD) and 10 healthy elderly (HE) subjects performed repeated assessments of spirography, using a touch screen telemetry device in their home environments. On inclusion, the patients were either treated with levodopa-carbidopa intestinal gel or were candidates for switching to this treatment. On each test occasion, the subjects were asked trace a pre-drawn Archimedes spiral shown on the screen, using an ergonomic pen stylus. The test was repeated three times and was performed using dominant hand. A clinician used a web interface which animated the spiral drawings, allowing him to observe different kinematic features, like accelerations and spatial changes, during the drawing process and to rate different motor impairments. Initially, the motor impairments of drawing speed, irregularity and hesitation were rated on a 0 (normal) to 4 (extremely severe) scales followed by marking the momentary motor state of the patient into 2 categories that is Off and Dyskinesia. A sample of spirals drawn by HE subjects was randomly selected and used in subsequent analysis. Methods: The raw spiral data, consisting of stylus position and timestamp, were processed using time series analysis techniques like discrete wavelet transform, approximate entropy and dynamic time warping in order to extract 13 quantitative measures for representing meaningful motor impairment information. A principal component analysis (PCA) was used to reduce the dimensions of the quantitative measures into 4 principal components (PC). In order to classify the motor states into 3 categories that is Off, HE and dyskinesia, a logistic regression model was used as a classifier to map the 4 PCs to the corresponding clinically assigned motor state categories. A stratified 10-fold cross-validation (also known as rotation estimation) was applied to assess the generalization ability of the logistic regression classifier to future independent data sets. To investigate mean differences of the 4 PCs across the three categories, a one-way ANOVA test followed by Tukey multiple comparisons was used. Results: The agreements between computed and clinician ratings were very good with a weighted area under the receiver operating characteristic curve (AUC) coefficient of 0.91. The mean PC scores were different across the three motor state categories, only at different levels. The first 2 PCs were good at discriminating between the motor states whereas the PC3 was good at discriminating between HE subjects and PD patients. The mean scores of PC4 showed a trend across the three states but without significant differences. The Spearman’s rank correlations between the first 2 PCs and clinically assessed motor impairments were as follows: drawing speed (PC1, 0.34; PC2, 0.83), irregularity (PC1, 0.17; PC2, 0.17), and hesitation (PC1, 0.27; PC2, 0.77). Conclusions: These findings suggest that spirography-based objective measures are valid measures of spatial- and time-dependent deficits and can be used to distinguish drug-related motor dysfunctions between Off and dyskinesia in PD. These measures can be potentially useful during clinical evaluation of individualized drug-related complications such as over- and under-medications thus maximizing the amount of time the patients spend in the On state.
Resumo:
OBJECTIVES: To develop a method for objective assessment of fine motor timing variability in Parkinson’s disease (PD) patients, using digital spiral data gathered by a touch screen device. BACKGROUND: A retrospective analysis was conducted on data from 105 subjects including65 patients with advanced PD (group A), 15 intermediate patients experiencing motor fluctuations (group I), 15 early stage patients (group S), and 10 healthy elderly subjects (HE) were examined. The subjects were asked to perform repeated upper limb motor tasks by tracing a pre-drawn Archimedes spiral as shown on the screen of the device. The spiral tracing test was performed using an ergonomic pen stylus, using dominant hand. The test was repeated three times per test occasion and the subjects were instructed to complete it within 10 seconds. Digital spiral data including stylus position (x-ycoordinates) and timestamps (milliseconds) were collected and used in subsequent analysis. The total number of observations with the test battery were as follows: Swedish group (n=10079), Italian I group (n=822), Italian S group (n = 811), and HE (n=299). METHODS: The raw spiral data were processed with three data processing methods. To quantify motor timing variability during spiral drawing tasks Approximate Entropy (APEN) method was applied on digitized spiral data. APEN is designed to capture the amount of irregularity or complexity in time series. APEN requires determination of two parameters, namely, the window size and similarity measure. In our work and after experimentation, window size was set to 4 and similarity measure to 0.2 (20% of the standard deviation of the time series). The final score obtained by APEN was normalized by total drawing completion time and used in subsequent analysis. The score generated by this method is hence on denoted APEN. In addition, two more methods were applied on digital spiral data and their scores were used in subsequent analysis. The first method was based on Digital Wavelet Transform and Principal Component Analysis and generated a score representing spiral drawing impairment. The score generated by this method is hence on denoted WAV. The second method was based on standard deviation of frequency filtered drawing velocity. The score generated by this method is hence on denoted SDDV. Linear mixed-effects (LME) models were used to evaluate mean differences of the spiral scores of the three methods across the four subject groups. Test-retest reliability of the three scores was assessed after taking mean of the three possible correlations (Spearman’s rank coefficients) between the three test trials. Internal consistency of the methods was assessed by calculating correlations between their scores. RESULTS: When comparing mean spiral scores between the four subject groups, the APEN scores were different between HE subjects and three patient groups (P=0.626 for S group with 9.9% mean value difference, P=0.089 for I group with 30.2%, and P=0.0019 for A group with 44.1%). However, there were no significant differences in mean scores of the other two methods, except for the WAV between the HE and A groups (P<0.001). WAV and SDDV were highly and significantly correlated to each other with a coefficient of 0.69. However, APEN was not correlated to neither WAV nor SDDV with coefficients of 0.11 and 0.12, respectively. Test-retest reliability coefficients of the three scores were as follows: APEN (0.9), WAV(0.83) and SD-DV (0.55). CONCLUSIONS: The results show that the digital spiral analysis-based objective APEN measure is able to significantly differentiate the healthy subjects from patients at advanced level. In contrast to the other two methods (WAV and SDDV) that are designed to quantify dyskinesias (over-medications), this method can be useful for characterizing Off symptoms in PD. The APEN was not correlated to none of the other two methods indicating that it measures a different construct of upper limb motor function in PD patients than WAV and SDDV. The APEN also had a better test-retest reliability indicating that it is more stable and consistent over time than WAV and SDDV.
Resumo:
Objective: To develop a method for objective quantification of PD motor symptoms related to Off episodes and peak dose dyskinesias, using spiral data gathered by using a touch screen telemetry device. The aim was to objectively characterize predominant motor phenotypes (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Background: A retrospective analysis was conducted on recordings from 65 patients with advanced idiopathic PD from nine different clinics in Sweden, recruited from January 2006 until August 2010. In addition to the patient group, 10 healthy elderly subjects were recruited. Upper limb movement data were collected using a touch screen telemetry device from home environments of the subjects. Measurements with the device were performed four times per day during week-long test periods. On each test occasion, the subjects were asked to trace pre-drawn Archimedean spirals, using the dominant hand. The pre-drawn spiral was shown on the screen of the device. The spiral test was repeated three times per test occasion and they were instructed to complete it within 10 seconds. The device had a sampling rate of 10Hz and measured both position and time-stamps (in milliseconds) of the pen tip. Methods: Four independent raters (FB, DH, AJ and DN) used a web interface that animated the spiral drawings and allowed them to observe different kinematic features during the drawing process and to rate task performance. Initially, a number of kinematic features were assessed including ‘impairment’, ‘speed’, ‘irregularity’ and ‘hesitation’ followed by marking the predominant motor phenotype on a 3-category scale: tremor, bradykinesia and/or choreatic dyskinesia. There were only 2 test occasions for which all the four raters either classified them as tremor or could not identify the motor phenotype. Therefore, the two main motor phenotype categories were bradykinesia and dyskinesia. ‘Impairment’ was rated on a scale from 0 (no impairment) to 10 (extremely severe) whereas ‘speed’, ‘irregularity’ and ‘hesitation’ were rated on a scale from 0 (normal) to 4 (extremely severe). The proposed data-driven method consisted of the following steps. Initially, 28 spatiotemporal features were extracted from the time series signals before being presented to a Multilayer Perceptron (MLP) classifier. The features were based on different kinematic quantities of spirals including radius, angle, speed and velocity with the aim of measuring the severity of involuntary symptoms and discriminate between PD-specific (bradykinesia) and/or treatment-induced symptoms (dyskinesia). A Principal Component Analysis was applied on the features to reduce their dimensions where 4 relevant principal components (PCs) were retained and used as inputs to the MLP classifier. Finally, the MLP classifier mapped these components to the corresponding visually assessed motor phenotype scores for automating the process of scoring the bradykinesia and dyskinesia in PD patients whilst they draw spirals using the touch screen device. For motor phenotype (bradykinesia vs. dyskinesia) classification, the stratified 10-fold cross validation technique was employed. Results: There were good agreements between the four raters when rating the individual kinematic features with intra-class correlation coefficient (ICC) of 0.88 for ‘impairment’, 0.74 for ‘speed’, 0.70 for ‘irregularity’, and moderate agreements when rating ‘hesitation’ with an ICC of 0.49. When assessing the two main motor phenotype categories (bradykinesia or dyskinesia) in animated spirals the agreements between the four raters ranged from fair to moderate. There were good correlations between mean ratings of the four raters on individual kinematic features and computed scores. The MLP classifier classified the motor phenotype that is bradykinesia or dyskinesia with an accuracy of 85% in relation to visual classifications of the four movement disorder specialists. The test-retest reliability of the four PCs across the three spiral test trials was good with Cronbach’s Alpha coefficients of 0.80, 0.82, 0.54 and 0.49, respectively. These results indicate that the computed scores are stable and consistent over time. Significant differences were found between the two groups (patients and healthy elderly subjects) in all the PCs, except for the PC3. Conclusions: The proposed method automatically assessed the severity of unwanted symptoms and could reasonably well discriminate between PD-specific and/or treatment-induced motor symptoms, in relation to visual assessments of movement disorder specialists. The objective assessments could provide a time-effect summary score that could be useful for improving decision-making during symptom evaluation of individualized treatment when the goal is to maximize functional On time for patients while minimizing their Off episodes and troublesome dyskinesias.
Resumo:
A abordagem do Value at Risk (VAR) neste trabalho será feita a partir da análise da curva de juros por componentes principais (Principal Component Analysis – PCA). Com essa técnica, os movimentos da curva de juros são decompostos em um pequeno número de fatores básicos independentes um do outro. Entre eles, um fator de deslocamento (shift), que faz com que as taxas da curva se movam na mesma direção, todas para cima ou para baixo; de inclinação (twist) que rotaciona a curva fazendo com que as taxas curtas se movam em uma direção e as longas em outra; e finalmente movimento de torção, que afeta vencimentos curtos e longos no mesmo sentido e vencimentos intermediários em sentido oposto. A combinação destes fatores produz cenários hipotéticos de curva de juros que podem ser utilizados para estimar lucros e perdas de portfolios. A maior perda entre os cenários gerados é uma maneira intuitiva e rápida de estimar o VAR. Este, tende a ser, conforme verificaremos, uma estimativa conservadora do respectivo percentual de perda utilizado. Existem artigos sobre aplicações de PCA para a curva de juros brasileira, mas desconhecemos algum que utilize PCA para construção de cenários e cálculo de VAR, como é feito no presente trabalho.Nesse trabalho, verificaremos que a primeira componente principal produz na curva um movimento de inclinação conjugado com uma ligeira inclinação, ao contrário dos resultados obtidos em curvas de juros de outros países, que apresentam deslocamentos praticamente paralelos.
Resumo:
The broader objective of this study undertaking can briefly be articulated in particulate aims as follows: to measure the attitudes of consumers regarding the brand displayed by this strategy as well as to highlight recall, recognition and purchase intentions generated by product placement on consumers. In addition, check the differences and similarities between the behavior of Brazilian and American consumers caused by the influence of product placements. The study was undertaken targeting consumer audience in Brazil and the U.S. A rang3 modeling set ups were performed in order to realign study instruments and hypothesis towards the research objectives. This study gave focus on the following hypothesized models. H1: Consumers / Participants who viewed the brands / products in the movie have a higher brand / product recall compared to the consumers / participants who did not view the brands / products in the movie. H2: US Consumers / Participants are able to recognize and recall brands / products which appear in the background of the movie than Brazil. H3: Consumers / participants from USA are more accepting of product placements compared to their counterparts in Brazil. H4: There are discernible similarities in consumer / participant brand attitudes and purchase intentions in consumers / participants from USA and Brazil in spite of the fact that their country of origin is different. Cronbach’s Alpha Coefficient ensured the reliability of survey instruments. The study involved the use of the Structural Equation Modeling (SEM) for the hypothesis testing. This study used the Confirmatory Factor Analysis (CFA) to assess both the convergent and discriminant validities instead of using the Exploratory Factor Analysis (EFA) or the Principal Component Analysis (PCA). This reinforced for the use of the regression Chi Square and T statistical tests in further. Only hypothesis H3 was rejected, the rest were not. T test provided insight findings on specific subgroup significant differences. In the SEM testing, the error variance for product placement attitudes was negative for both the groups. On this The Heywood Case came in handy to fix negative values. The researcher used both quantitative and qualitative approach where closed ended questionnaires and interviews respectively were used to collect primary data. The results were additionally provided with tabulations. It can be concluded that, product placement varies markedly in the U.S. from Brazil based on the influence a range of factors provided in the study. However, there are elements of convergence probably driven by the convergence in technology. In order, product placement to become more competitive in the promotional marketing, there will be the need for researchers to extend focus from the traditional variables and add knowledge on the conventional marketplace factors that is the sell-ability of the product placement technologies and strategies.
Resumo:
Este trabalho observa como as variáveis macroeconômicas (expectativa de inflação, juro real, hiato do produto e a variação cambial) influenciam a dinâmica da Estrutura a Termo da Taxa de Juros (ETTJ). Esta dinâmica foi verificada introduzindo a teoria de Análise de Componentes Principais (ACP) para capturar o efeito das componentes mais relevantes na ETTJ (nível, inclinação e curvatura). Utilizando-se as estimativas por mínimos quadrados ordinários e pelo método generalizado dos momentos, foi verificado que existe uma relação estatisticamente significante entre as variáveis macroeconômicas e as componentes principais da ETTJ.
Resumo:
Thirty-six Madeira wine samples from Boal, Malvazia, Sercial and Verdelho white grape varieties were analyzed in order to estimate the free fraction of monoterpenols and C13 norisoprenoids (terpenoid compounds) using dynamic headspace solid phase micro-extraction (HS-SPME) technique coupled with gas chromatography–mass spectrometry (GC–MS). The average values from three vintages (1998–2000) show that these wines have characteristic profiles of terpenoid compounds. Malvazia wines exhibits the highest values of total free monoterpenols, contrary to Verdelho wines which had the lowest levels of terpenoids but produced the highest concentration of farnesol. The use of multivariate analysis techniques allows establishing relations between the compounds and the varieties under investigation. Principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to the obtained matrix data. A good separation and classification power between the four groups as a function of their varietal origin was observed.
Resumo:
A sensitive assay to identify volatile organic metabolites (VOMs) as biomarkers that can accurately diagnose the onset of breast cancer using non-invasively collected clinical specimens is ideal for early detection. Therefore the aim of this study was to establish the urinary metabolomic profile of breast cancer patients and healthy individuals (control group) and to explore the VOMs as potential biomarkers in breast cancer diagnosis at early stage. Solid-phase microextraction (SPME) using CAR/PDMS sorbent combined with gas chromatography–mass spectrometry was applied to obtain metabolomic information patterns of 26 breast cancer patients and 21 healthy individuals (controls). A total of seventy-nine VOMs, belonging to distinct chemical classes, were detected and identified in control and breast cancer groups. Ketones and sulfur compounds were the chemical classes with highest contribution for both groups. Results showed that excretion values of 6 VOMs among the total of 79 detected were found to be statistically different (p < 0.05). A significant increase in the peak area of (−)-4-carene, 3-heptanone, 1,2,4-trimethylbenzene, 2-methoxythiophene and phenol, in VOMs of cancer patients relatively to controls was observed. Statiscally significant lower abundances of dimethyl disulfide were found in cancer patients. Bioanalytical data were submitted to multivariate statistics [principal component analysis (PCA)], in order to visualize clusters of cases and to detect the VOMs that are able to differentiate cancer patients from healthy individuals. Very good discrimination within breast cancer and control groups was achieved. Nevertheless, a deep study using a larger number of patients must be carried out to confirm the results.
Resumo:
In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was evaluated as a reliable and improved alternative to the commonly used liquid–liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35 °C for 42 h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible for floral notes. Bual and Sercial grapes are characterized by aromatic alcohols (e.g. benzyl alcohol, 2-phenylethyl alcohol), so an improvement in sensorial characteristics (citrus, sweet and floral odors) of the corresponding wines, as result of hydrolytic process, is expected.
Resumo:
The volatile composition of different apple varieties of Malus domestica Borkh. species from different geographic regions at Madeira Islands, namely Ponta do Pargo (PP), Porto Santo (PS), and Santo da Serra (SS) was established by headspace solid-phase microextraction (HS-SPME) procedure followed by GC-MS (GC-qMS) analysis. Significant parameters affecting sorption process such as fiber coating, extraction temperature,extractiontime,sampleamount,dilutionfactor,ionicstrength,anddesorption time,wereoptimizedanddiscussed.TheSPMEfibercoatedwith50/30 lmdivinylbenzene/carboxen/PDMS (DVB/CAR/PDMS) afforded highest extraction efficiency of volatile compounds, providing the best sensitivity for the target volatiles, particularly whenthesampleswereextractedat508Cfor30 minwithconstantmagneticstirring. A qualitative and semi-quantitative analysis between the investigated apple species has been established. It was possible to identify about 100 of volatile compounds amongpulp(46,45,and39),peel(64,60,and64),andentirefruit(65,43,and50)inPP, PS,andSSapples,respectively.Ethylesters,terpenes,andhigheralcoholswerefound tobethemostrepresentativevolatiles. a-Farnesene,hexan-1-olandhexyl2-methylbutyratewerethecompoundsfoundinthevolatileprofileofstudiedappleswiththelargestGCarea,representing,onaverage,24.71,14.06,and10.80%ofthetotalvolatilefractionfromPP,PS,andSSapples.InPPentireapple,themostabundantcompoundsidentified were a-farnesene (30.49%), the unknown compound m/z (69, 101, 157) (21.82%) andhexylacetate(6.57%).RegardingPSentireapplethemajorcompoundswere a-farnesene(16.87%),estragole(15.43%),hexan-1-ol(10.94),andE-2-hexenal(10.67).a-Farnesene(30.3%),hexan-1-ol(18.90%),2-methylbutanoicacid(4.7%),andpentan-1-ol(4.6%) werealsofoundasSSentireapplevolatilespresentinahigherrelativecontent.Principal component analysis (PCA) of the results clustered the apples into three groups according to geographic origin. Linear discriminant analysis (LDA) was performed in order to detect the volatile compounds able to differentiate the three kinds of apples investigated. The most important contributions to the differentiation of the PP, PS, and SS apples were ethyl hexanoate, hexyl 2-methylbutyrate, E,E-2,4-heptadienal, pethylstyrene,andE-2-hexenal.