899 resultados para metal ion sensor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The protonation constants of benzylidenepyruvate, 2-chloro-, 4-chlorobenzylidinepyruvate and cinnamylidenepyruvate as well as the stability constants of their binary 1:1 complexes with Cu(II), La(III), Pr(III), Sm(III), Lu(III), Sc(III) and Th(IV) have been determined spectrophotometrically in an aqueous medium at 25 °C and ionic strength 0.500 M, held with sodium perchlorate. Coordination centres in the aforementioned ligands are suggested. © 1995.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silica gel having a particle size between 0.2 and 0.05 mm and a specific surface area, S BET = 473 m 2 g -1, was chemically modified with benzimidazole. Adsorption isotherms of CuX 2 (X = Cl, Br or ClO 4) from ethanol and acetone solutions were studied at 298 K. The metal is bonded to the surface through the free nitrogen atom of the attached benzimidazole. The average number of ligands co-ordinated to the central metal ion was shown to depend on the solid surface loading by the solute. At low loading the electronic and ESR spectral parameters indicated that the copper ion is in a distorted-tetragonal symmetry field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ion implantation of metal species into insulators provides a tool for the formation of thin, electrically conducting, surface layers with experimenter-controlled resistivity. High energy implantation of Pt and Ti into alumina accelerator components has been successfully employed to control high voltage surface breakdown in a number of cases. In the work described here we have carried out some basic investigations related to the origin of this phenomenon. By comparison of the results of alumina implanted with Ti at 75 keV with the results of prior investigations of polymers implanted with Pt at 49 eV and Au at 67 eV, we describe a physical model of the effect based on percolation theory and estimate the percolation parameters for the Ti-alumina composite. We estimate that the percolation dose threshold is about 4 x 10(16) cm(-2) and the maximum dose for which the system remains an insulator-conductor composite is about 10 x 10(16) cm(-2). The saturation electrical conductivity is estimated to be about 50 S/m. We conclude that the observed electrical conductivity properties of Ti-implanted alumina can be satisfactorily described by percolation theory. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697900]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mixed-valence complex, [Fe(III)Fe(II)L1(mu-OAc)(2)]BF4 center dot H2O, where the ligand H(2)L1 = 2-{[[3-[((bis-(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The (FeFeII)-Fe-III and Fe-2(III) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1).S-2, where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The (FeFeII)-Fe-III complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe-2(III) complex showed an EPR spectrum due to population of the S-tot = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the (FeFeII)-Fe-III complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 x 10(-3) s(-1); K-m = 4.63 x 10(-3) mol L-1) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe-III. It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(mu-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The toxicity of cadmium and chromium to Pseudokirchneriella subcapitata and Microcystis aeruginosa was evaluated through algal growth rate during 96h exposure bioassays. Free metal ion concentrations were obtained using MINEQL(+) 4.61 and used for IC50 determination. Metal accumulations by the microorganisms were determined and they were found to be dependent on the concentration of Cd2+ and Cr6+. IC50 for P. subcapitata were 0.60 mu mol L-1 free Cd2+ and 20 mu mol L-1 free Cr6+, while the IC50 values for M. aeruginosa were 0.01 mu mol L-1 Cd2+ and 11.07 mu mol L-1 Cr6+. P. subcapitata accumulated higher metal concentrations (0.001 - 0.05 mu mol Cd mg(-1) dry wt. and 0.001 - 0.04 mu mol Cr mg(-1) dry wt) than the cyanobacteria (0.001 - 0.01 mu mol Cd mg(-1) dry wt and 0.001 - 0.02 mu mol Cr mg(-1) dry wt). Cadmium was more toxic than chromium to both the microorganisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g(-1), which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work shows for the first time that native CSTB polymerizes on addition of Cu2+ and DnaK (Hsp70). Cysteines are involved in the polymerization process and in particular at least one cysteine is necessary. We propose that Cu2+ interacts with the thiol group of cysteine and oxidize it. The oxidized cysteine modifies the CSTB structure allowing interaction with DnaK/Hsp70 to occur. Thus, Cu2+ binding to CSTB exposes a site for DnaK and such interaction allows the polymerization of CSTB. The polymers generated from native CSTB monomers, are DTT sensitive and they may represent physiological polymers. Denatured CSTB does not require Cu2+ and polymerizes simply on addition of DnaK. The polymers generated from denatured CSTB do not respond to DTT. They have characteristics similar to those of the CSTB toxic aggregates described in vivo in eukaryotic cells following CSTB over-expression. Interaction between CSTB and Hsp70 is shown by IP experiments. The interaction occurs with WT CSTB and not with the cys mutant. This suggests that disulphur bonds are involved. Methal-cathalyzed oxidation of proteins involves reduction of the metal ion(s) bound to the protein itself and oxidation of neighboring ammino acid residues resulting in structural modification and de-stabilization of the molecule. In this work we propose that the cysteine thyol residue of CSTB in the presence of Cu2+ is oxidized, and cathalyzes the formation of disulphide bonds with Hsp70, that, once bound to CSTB, mediates its polymerization. In vivo this molecular mechanism of CSTB polymerization could be regulated by redox environment through the cysteine residue. This may imply that CSTB physiological polymers have a specific cellular function, different from that of the protease inhibitor known for the CSTB monomer. This hypothesis is interesting in relation to Progressive Myoclonus Epilepsy of type 1 (EPM1). This pathology is usually caused by mutations in the CSTB gene. CSTB is a ubiquitous protein, but EPM1 patients have problems only in the central nervous system. Maybe physiological CSTB polymers have a specific function altered in people affected by EPM1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research interest of this study is to investigate surface immobilization strategies for proteins and other biomolecules by the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) technique. The recrystallization features of the S-layer proteins and the possibility of combining the S-layer lattice arrays with other functional molecules make this protein a prime candidate for supramolecular architectures. The recrystallization behavior on gold or on the secondary cell wall polymer (SCWP) was recorded by SPR. The optical thicknesses and surface densities for different protein layers were calculated. In DNA hybridization tests performed in order to discriminate different mismatches, recombinant S-layer-streptavidin fusion protein matrices showed their potential for new microarrays. Moreover, SCWPs coated gold chips, covered with a controlled and oriented assembly of S-layer fusion proteins, represent an even more sensitive fluorescence testing platform. Additionally, S-layer fusion proteins as the matrix for LHCII immobilization strongly demonstrate superiority over routine approaches, proving the possibility of utilizing them as a new strategy for biomolecular coupling. In the study of the SPFS hCG immunoassay, the biophysical and immunological characteristics of this glycoprotein hormone were presented first. After the investigation of the effect of the biotin thiol dilution on the coupling efficiently, the interfacial binding model including the appropriate binary SAM structure and the versatile streptavidin-biotin interaction was chosen as the basic supramolecular architecture for the fabrication of a SPFS-based immunoassay. Next, the affinity characteristics between different antibodies and hCG were measured via an equilibrium binding analysis, which is the first example for the titration of such a high affinity interaction by SPFS. The results agree very well with the constants derived from the literature. Finally, a sandwich assay and a competitive assay were selected as templates for SPFS-based hCG detection, and an excellent LOD of 0.15 mIU/ml was attained via the “one step” sandwich method. Such high sensitivity not only fulfills clinical requirements, but is also better than most other biosensors. Fully understanding how LHCII complexes transfer the sunlight energy directionally and efficiently to the reaction center is potentially useful for constructing biomimetic devices as solar cells. After the introduction of the structural and the spectroscopic features of LHCII, different surface immobilization strategies of LHCII were summarized next. Among them the strategy based on the His-tag and the immobilized metal (ion) affinity chromatography (IMAC) technique were of great interest and resulted in different kinds of home-fabricated His-tag chelating chips. Their substantial protein coupling capacity, maintenance of high biological activity and a remarkably repeatable binding ability on the same chip after regeneration was demonstrated. Moreover, different parameters related to the stability of surface coupled reconstituted complexes, including sucrose, detergent, lipid, oligomerization, temperature and circulation rate, were evaluated in order to standardize the most effective immobilization conditions. In addition, partial lipid bilayers obtained from LHCII contained proteo-liposomes fusion on the surface were observed by the QCM technique. Finally, the inter-complex energy transfer between neighboring LHCIIs on a gold protected silver surface by excitation with a blue laser (λ = 473nm) was recorded for the first time, and the factors influencing the energy transfer efficiency were evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Design parameters, process flows, electro-thermal-fluidic simulations and experimental characterizations of Micro-Electro-Mechanical-Systems (MEMS) suited for gas-chromatographic (GC) applications are presented and thoroughly described in this thesis, whose topic belongs to the research activities the Institute for Microelectronics and Microsystems (IMM)-Bologna is involved since several years, i.e. the development of micro-systems for chemical analysis, based on silicon micro-machining techniques and able to perform analysis of complex gaseous mixtures, especially in the field of environmental monitoring. In this regard, attention has been focused on the development of micro-fabricated devices to be employed in a portable mini-GC system for the analysis of aromatic Volatile Organic Compounds (VOC) like Benzene, Toluene, Ethyl-benzene and Xylene (BTEX), i.e. chemical compounds which can significantly affect environment and human health because of their demonstrated carcinogenicity (benzene) or toxicity (toluene, xylene) even at parts per billion (ppb) concentrations. The most significant results achieved through the laboratory functional characterization of the mini-GC system have been reported, together with in-field analysis results carried out in a station of the Bologna air monitoring network and compared with those provided by a commercial GC system. The development of more advanced prototypes of micro-fabricated devices specifically suited for FAST-GC have been also presented (silicon capillary columns, Ultra-Low-Power (ULP) Metal OXide (MOX) sensor, Thermal Conductivity Detector (TCD)), together with the technological processes for their fabrication. The experimentally demonstrated very high sensitivity of ULP-MOX sensors to VOCs, coupled with the extremely low power consumption, makes the developed ULP-MOX sensor the most performing metal oxide sensor reported up to now in literature, while preliminary test results proved that the developed silicon capillary columns are capable of performances comparable to those of the best fused silica capillary columns. Finally, the development and the validation of a coupled electro-thermal Finite Element Model suited for both steady-state and transient analysis of the micro-devices has been described, and subsequently implemented with a fluidic part to investigate devices behaviour in presence of a gas flowing with certain volumetric flow rates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Reverse Vaccinology (RV) approach allows using genomic information for the delineation of new protein-based vaccines starting from an in silico analysis. The first powerful example of the application of the RV approach is given by the development of a protein-based vaccine against serogroup B Meningococcus. A similar approach was also used to identify new Staphylococcus aureus vaccine candidates, including the ferric hydroxamate-binding lipoprotein FhuD2. S. aureus is a widespread human pathogen, which employs various different strategies for iron uptake, including: (i) siderophore-mediated iron acquisition using the endogenous siderophores staphyloferrin A and B, (ii) siderophore-mediated iron acquisition using xeno-siderophores (the pathway exploited by FhuD2) and (iii) heme-mediated iron acquisition. In this work the high resolution crystal structure of FhuD2 in the iron (III)-siderophore-bound form was determined. FhuD2 belongs to the Periplasmic Binding Protein family (PBP ) class III, and is principally formed by two globular domains, at the N- and C-termini of the protein, that make up a cleft where ferrichrome-iron (III) is bound. The N- and C-terminal domains, connected by a single long α-helix, present Rossmann-like folds, showing a β-stranded core and an α-helical periphery, which do not undergo extensive structural rearrangement when they interact with the ligand, typical of class III PBP members. The structure shows that ferrichrome-bound iron does not come directly into contact with the protein; rather, the metal ion is fully coordinated by six oxygen donors of the hydroxamate groups of three ornithine residues, which, with the three glycine residues, make up the peptide backbone of ferrichrome. Furthermore, it was found that iron-free ferrichrome is able to subtract iron from transferrin. This study shows for the first time the structure of FhuD2, which was found to bind to siderophores ,and that the protein plays an important role in S. aureus colonization and infection phases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lo scopo di questo studio è stato quello di determinare se a lungo termine le concentrazioni sieriche di ioni nei pazienti con protesi di rivestimento d’anca metallo-metallo (MOM-HR, metal-on-metal hip resurfacing) fossero differenti da quelle valutate nei pazienti con protesi totale d’anca metallo-metallo e testa del diametro di 28 mm (MOM-THA, metal-on-metal total hip arthroplasty); inoltre è stato valutato se le concentrazioni ioniche fossero al di sopra dei valori di riferimento e se fosse possibile stabilire l’esistenza di una relazione tra sesso e concentrazioni di ioni con riferimento al tipo di impianto. Il gruppo MOM-HR era costituito da 25 pazienti mentre il gruppo MOM-THA era di 16 pazienti. Per poter ricavare i valori di riferimento sono stati reclutati 48 donatori sani. La misurazione delle concentrazioni degli ioni cobalto (Co), cromo (Cr), nickel (Ni) e molibdeno (Mo) è stata effettuata utilizzando la spettrofotometria ad assorbimento atomico su fornace di grafite. A parte il Ni, le concentrazioni di ioni nei pazienti con MOM-HR erano più elevate rispetto ai controlli. Il rilascio di ioni Cr e Co nei pazienti con MOM-HR è risultato superiore rispetto ai soggetti con MOM-THA. Da un’analisi basata sul sesso, è emerso che nelle femmine con MOM-HR i livelli di ioni Cr e Co sono risultati significativamente aumentati rispetto alle femmine con MOM-THA. Indipendentemente dal tipo di impianto, gli accoppiamenti metallo-metallo (MOM) producono concentrazioni di ioni metallici significativamente più alte a follow-up a lungo termine rispetto a quelle osservate nei soggetti sani. Un fattore che deve essere attentamente considerato nella scelta dell’impianto, e in particolar modo nei soggetti giovani, è il cospicuo rilascio di ioni Cr e Co nella popolazione femminile con MOM-HR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kohlenhydrate wurden bislang nur selten zur Darstellung chiraler Liganden verwendet. Sie gelten als zu polyfunktionell und konformativ zu flexibel, um daraus mit vertretbarem Aufwand Liganden zu synthetisieren, die die Anforderungen an ein leistungsfähiges Katalysatorsystem - die spezifische Komplexierung des Metalls in einer konformativ möglichst rigiden Umgebung - erfüllen.rnDas Element der planaren Chiralität erwies sich in vielen asymmetrischen, katalytischen Prozessen als entscheidend für die Erzielung hoher Enantioselektivitäten.rnDie vorliegende Arbeit baut auf den Kohlenhydratliganden-Synthesen mit Glycosylaminen auf, die über geeignete komplexierende Zentren verfügen, um damit andere als die bisher mit Kohlenhydraten bekannten enantioselektiven Katalysen durchführen zu können. Zur Synthese stickstoffhaltiger chiraler Verbindungen haben sich besonders perpivaloylierte Glycosylamine vom Typ des 2,3,4,6-Tetra-O-pivaloyl-β-D-galactopyranosylamins bewährt. Im Rahmen dieser Dissertation wurden Schiff-Basen aus pivaloyliertem Galactosylamin bzw. verschiedenen anderen Galactosylamin-Bausteinen als chiralem Rückgrat, und einem Aldehyd auf der Basis von planar chiralem [2.2]Paracyclophan dargestellt. Die neuen N-Galactosylimine wurden außerdem in asymmetrischen Ugi-Reaktionen und in Tandem Mannich-Michael-Reaktionen zu N-Galactosyl-dehydropiperidinonen untersucht. Bei der Spaltung der dargestellten N-Galactosylimine von Paracyclophan-aldehyden unter mineralsauren Bedingungen sollten die entsprechenden mono- und di-substituierten Formyl- [2.2]paracyclophane in enantiomerenreiner Form erhalten werden. Die erhaltenen Verbindungen wurden als potentielle N,O-Liganden in der asymmetrischen Strecker Reaktion, in die enantioselektiven Epoxidierungen und in der Addition von Diethylzink an aromatische und aliphatische Aldehyde untersucht.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, the self-assembled functional structure of a broad range of amphiphilic molecular transporters is studied. By employing paramagnetic probe molecules and ions, continuous-wave and pulse electron paramagnetic resonance spectroscopy reveal information about the local structure of these materials from the perspective of incorporated guest molecules. First, the transport function of human serum albumin for fatty acids is in the focus. As suggested by the crystal structure, the anchor points for the fatty acids are distributed asymmetrically in the protein. In contrast to the crystallographic findings, a remarkably symmetric entry point distribution of the fatty acid binding channels is found, which may facilitate the uptake and release of the guest molecules. Further, the metal binding of 1,2,3-triazole modified star-shaped cholic acid oligomers is studied. These biomimetic molecules are able to include and transport molecules in solvents of different polarity. A pre-arrangement of the triazole groups induces a strong chelate-like binding and close contact between guest molecule and metal ion. In absence of a preordering, each triazole moiety acts as a single entity and the binding affinity for metal ions is strongly decreased. Hydrogels based on N-isopropylacrylamide phase separate from water above a certain temperature. The macroscopic thermal collapse of these hydrogels is utilized as a tool for dynamic nuclear polarization. It is shown that a radical-free hyperpolarized solution can be achieved with a spin-labeled gel as separable matrix. On the nanoscale, these hydrogels form static heterogeneities in both structure and function. Collapsed regions protect the spin probes from a chemical decay while open, water-swollen regions act as catalytic centers. Similarly, thermoresponsive dendronized polymers form structural heterogeneities, which are, however, highly dynamic. At the critical temperature, they trigger the aggregation of the polymer into mesoglobules. The dehydration of these aggregates is a molecularly controlled non-equilibrium process that is facilitated by a hydrophobic dendritic core. Further, a slow heating rate results in a kinetically entrapped non-equilibrium state due to the formation of an impermeable dense polymeric layer at the periphery of the mesoglobule.