894 resultados para linearity
Resumo:
Tuberculosis is a serious disease, but curable in practically 100% of new cases, since complied the principles of modern chemotherapy. Isoniazid (ISN), Rifampicin (RIF), Pyrazinamide (PYR) and Chloride Ethambutol (ETA) are considered first line drugs in the treatment of tuberculosis, by combining the highest level of efficiency with acceptable degree of toxicity. Concerning USP 33 - NF28 (2010) the chromatography analysis to 3 of 4 drugs (ISN, PYR and RIF) last in average 15 minutes and 10 minutes more to obtain the 4th drug (ETA) using a column and mobile phase mixture different, becoming its industrial application unfavorable. Thus, many studies have being carried out to minimize this problem. An alternative would use the UFLC, which is based with the same principles of HPLC, however it uses stationary phases with particles smaller than 2 μm. Therefore, this study goals to develop and validate new analytical methods to determine simultaneously the drugs by HPLC/DAD and UFLC/DAD. For this, a analytical screening was carried out, which verified that is necessary a gradient of mobile phase system A (acetate buffer:methanol 94:6 v/v) and B (acetate buffer:acetonitrile 55:45 v/v). Furthermore, to the development and optimization of the method in HPLC and UFLC, with achievement of the values of system suitability into the criteria limits required for both techniques, the validations have began. Standard solutions and tablets test solutions were prepared and injected into HPLC and UFLC, containing 0.008 mg/mL ISN, 0.043 mg/mL PYR, 0.030 mg.mL-1 ETA and 0.016 mg/mL RIF. The validation of analytical methods for HPLC and UFLC was carried out with the determination of specificity/selectivity, analytical curve, linearity, precision, limits of detection and quantification, accuracy and robustness. The methods were adequate for determination of 4 drugs separately without interfered with the others. Precise, due to the fact of the methods demonstrated since with the days variation, besides the repeatability, the values were into the level required by the regular agency. Linear (R> 0,99), once the methods were capable to demonstrate results directly proportional to the concentration of the analyte sample, within of specified range. Accurate, once the methods were capable to present values of variation coefficient and recovery percentage into the required limits (98 to 102%). The methods showed LOD and LOQ very low showing the high sensitivity of the methods for the four drugs. The robustness of the methods were evaluate, facing the temperature and flow changes, where they showed robustness just with the preview conditions established of temperature and flow, abrupt changes may influence with the results of methods
Resumo:
Bioidentical hormones are defined as compounds that have exactly the same chemical and molecular structure as hormones that are produced in the human body. It is believed that the use of hormones may be safer and more effective than the non-bioidentical hormones, because binding to receptors in the organism would be similar to the endogenous hormone. Bioidentical estrogens have been used in menopausal women, as an alternative to traditional hormone replacement therapy. Thermal data of these hormones are scarce in literature. Thermal analysis comprises a group of techniques that allows evaluating the physical-chemistry properties of a drug, while the drug is subjected to a controlled temperature programming. The thermal techniques are used in pharmaceutical studies for characterization of drugs, purity determination, polymorphism identification, compatibility and evaluation of stability. This study aims to characterize the bioidentical hormones estradiol and estriol through thermal techniques TG/DTG, DTA, DSC, DSC-photovisual. By the TG curves analysis was possible to calculated kinetic parameters for the samples. The kinetic data showed that there is good correlation in the different models used. For both estradiol and estriol, was found zero order reaction, which enabled the construction of the vapor pressure curves. Data from DTA and DSC curves of melting point and purity are the same of literature, showed relation with DSC-photovisual results. The analysis DTA curves showed the fusion event had the best linearity for both hormones. In the evaluation of possible degradation products, the analysis of the infrared shows no degradation products in the solid state
Resumo:
The synthetic guanylhydrazones WE010 (3,5-di-tert-butil-4-hidroxibenzaldehyde-guanylhydrazone), WE014 (4-bifenilcarboxialdehydeguanylhydrazone) and WE017 (3,4-diclorobenzaldehydeguanylhydrazone) showed high cytotoxic activity in terms of percentage inhibition of cancer cells growth. However, further progress in the development of these drug candidates requires precise and convenient methods for their qualitative and quantitative analyses. The aim of this study was to develop and validate High Performance Liquid Chromatography with diode-array detection (HPLC-DAD) and Ultra Fast Liquid Chromatography with diode-array detection (UFLC-DAD) methods suitable for as simultaneous as isolated determination of studied guanylhydrazones, based on the optimization of chromatographic parameters and obtaining reduced detection times. The chromatographic analyses of analytes by HPLC were performed on C18 ACE analytical column (150 mm x 4.6 mm), with a particle size of 5.0 μm. Among all the conditions assayed, the best results of separation were obtained with a mixture of methanol:water (60:40, v/v) as the mobile phase at a flow rate 1.5mL/min and pH of 3.5 adjusted at acetic acid. The UFLC method was developed by experimetal desing techniques in order to find optimal chromatographic analytical conditions, which were achieved on XR-ODS analytical column (50 mm x 3.0 mm), with a particle size of 2,2 μm, maintained at 25 ºC. The mobile phase was consisted of methanol:water (65:35, v/v) with 0.1% triethylamine (TEA) and pH of 3.5 adjusted at acetic acid, at a flow rate 0.5 mL/min. The procedure were validated following evaluating parameters such as specificity, linearity, limits of detection (LD) and quantification (LQ), precision, accuracy and robustness, giving results within the acceptable range. Although the UFLC method shows better sensitivity (lower values of LD and LQ), robustness (lower rates of relative standard deviation) and minimize spending time and solvent, both developed methods were adequately applied to the analysis of guanylhydrazones molecules, may be used in routine of quality control laboratories. Keywords: guanylhydrazones, HPLC/DAD, UFLC/DAD, validation of analitical method
Resumo:
The objective of this study was to evaluate the quality of bovine frozen-thawed sperm cells after Percoll gradient centrifugation. Frozen semen doses were obtained from six bulls of different breeds, including three taurine and three Zebu animals. Four ejaculates per bull were evaluated before and after discontinuous Percoll gradient centrifugation. Sperm motility was assessed by computer-assisted semen analysis and the integrity of the plasma and acrosomal membranes, as well as mitochondrial function, were evaluated using a combination of fluorescent probes propidium iodide, fluorescein isothiocyanate-conjugated Pisum sativum agglutinin and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide. The procedure of Percoll gradient centrifugation increased the percentage of total and progressive sperm motility, beat frequency, rectilinear motility, linearity and rapidly moving cells. In addition, the percentage of cells with intact plasma membrane and mitochondrial membrane potential was increased in post-centrifugation samples. However, the percentage of sperm cells with intact acrosomal membrane was markedly reduced. The method used selected the motile cells with intact plasma membrane and higher mitochondrial functionality in frozen-thawed bull semen, but processing, centrifugation and/or the Percoll medium caused damage to the acrosomal membrane.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work deals with a mathematical fundament for digital signal processing under point view of interval mathematics. Intend treat the open problem of precision and repesention of data in digital systems, with a intertval version of signals representation. Signals processing is a rich and complex area, therefore, this work makes a cutting with focus in systems linear invariant in the time. A vast literature in the area exists, but, some concepts in interval mathematics need to be redefined or to be elaborated for the construction of a solid theory of interval signal processing. We will construct a basic fundaments for signal processing in the interval version, such as basic properties linearity, stability, causality, a version to intervalar of linear systems e its properties. They will be presented interval versions of the convolution and the Z-transform. Will be made analysis of convergences of systems using interval Z-transform , a essentially interval distance, interval complex numbers , application in a interval filter.
Resumo:
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Resumo:
Several mobile robots show non-linear behavior, mainly due friction phenomena between the mechanical parts of the robot or between the robot and the ground. Linear models are efficient in some cases, but it is necessary take the robot non-linearity in consideration when precise displacement and positioning are desired. In this work a parametric model identification procedure for a mobile robot with differential drive that considers the dead-zone in the robot actuators is proposed. The method consists in dividing the system into Hammerstein systems and then uses the key-term separation principle to present the input-output relations which shows the parameters from both linear and non-linear blocks. The parameters are then simultaneously estimated through a recursive least squares algorithm. The results shows that is possible to identify the dead-zone thresholds together with the linear parameters
Resumo:
In this work a pyrometer using the classic model of Kimball-Hobbs was developed, tested and calibrated. The solar radiation is verified through the temperature difference between the sensible elements covered by absorbing (black) and reflecting (white) pigmentations of the incoming radiation. The photoacoustic technique was used to optimize the choice of the pigments. Methodologies associated with linearity, thermo-variation, sensibility, response time and distance are also presented. To correctly classify the results, the international standard ISO 9060 as well as indicative parameters of World Meteorological Organization (WMO) are used. In addition a system of data acquisition of two channels with 12 bits, constructed during the this time, was used to measure the global solar radiation on the ground by the pyrometer and also by another pyrometer certified in the case of Keep & zonen. The results statistically show, through the hypothesis test presented here, that both equipments find population average with 95% of correctness
Resumo:
The development of non-linear controllers gained space in the theoretical ambit and of practical applications on the moment that the arising of digital computers enabled the implementation of these methodologies. In comparison with the linear controllers more utilized, the non -linear controllers present the advantage of not requiring the linearity of the system to determine the parameters of control, which permits a more efficient control especially when the system presents a high level of non-linearity. Another additional advantage is the reduction of costs, since to obtain the efficient control through linear controllers it is necessary the utilization of sensors and more refined actuators than when it is utilized a non-linear controller. Among the non-linear theories of control, the method of control by gliding ways is detached for being a method that presents more robustness, before uncertainties. It is already confirmed that the adoption of compensation on the region of residual error permits to improve better the performance of these controllers. So, in this work it is described the development of a non-linear controller that looks for an association of strategy of control by gliding ways, with the fuzzy compensation technique. Through the implementation of some strategies of fuzzy compensation, it was searched the one which provided the biggest efficiency before a system with high level of nonlinearities and uncertainties. The electrohydraulic actuator was utilized as an example of research, and the results appoint to two configurations of compensation that permit a bigger reduction of the residual error
Resumo:
Um estudo foi realizado com a finalidade de avaliar a decomposição da biomassa de plantas aquáticas, incorporadas ou não ao solo, provenientes do controle mecânico, no reservatório da UHE Americana. O ensaio foi realizado em casa de vegetação, localizada no Núcleo de Pesquisas Avançadas em Matologia (NUPAM) da FCA/Unesp-Botucatu. A avaliação foi conduzida em vasos contendo 14 kg de solo, simulando descartes de 50, 100, 150 e 200 t MF de plantas ha-1 e avaliando o processo de decomposição através da liberação de CO2, divididos em duas etapas: a primeira em solo seco e, a segunda, na seqüência, com o solo úmido. A quantificação do CO2 liberado foi realizada através de titulação de solução adicionada ao processo de incubação de 24 horas dos vasos. Os dados foram interpolados e analisados seguindo modelo de Mitscherlich, com algumas modificações. Na primeira etapa, foi observada uma rápida liberação de CO2 até o décimo dia, seguida de estabilização. O maior teor de CO2 liberado foi observado no tratamento com descarte de 200 t MF ha-1 incorporado ao solo. Os dados avaliados durante a segunda fase do ensaio representaram uma maior linearidade no processo de liberação de CO2, indicando um período mais longo do processo de degradação da biomassa descartada.
Resumo:
Langmuir films have been fabricated from poly[(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene] (OC1OC6-PPV). The stability and the area per monomer for condensed films indicate the formation of true monolayers with a very small extent of aggregation, which is unusual for polymer films. This is attributed to the linearity of the alkyl side chain. The Y-type Langmuir-Blodgett (LB) films produced from Langmuir films of OC1OC6-PPV have distinctive features compared to those of cast films, probably due to the organization in the LB films whereas the molecules are randomly oriented in cast films. Infrared absorption spectra recorded for both transmission and reflection modes indicate that OC1OC6-PPV molecules are anchored to the substrate by the lateral groups. This is confirmed by the Raman spectrum, in which a distortion of the vinylene group was observed, and by surface enhanced fluorescence (SEF) on an LB monolayer deposited onto Ag nanoparticles. The more homogeneous nature of the LB films in comparison with the case of cast films was demonstrated by optical microscopy and fluorescence measurements where the emission spectra were essentially the same for different regions of an LB film but showed dispersion in cast films. The LB films also displayed reversible photoconductivity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Propolis obtained from honeybee hives has been widely used in medicine, cosmetics, and industry due to its versatile biological activities (antioxidant, antimicrobial, fungicidal, antiviral, antiulcer, immunostimulating, and cytostatic). These activities are mainly attributed to the presence of flavonoids in propolis, which points out the interest in quantifying these constituents in propolis preparations, as well as validation of analytical methodologies. High-performance liquid chromatography (HPLC) methods have been reported to quantify isolated flavonoids or these compounds in complex biological matrices, such as herbal raw materials and extractive preparations. An efficient, precise, and reliable method was developed for quantification of propolis extractive solution using HPLC with UV detection. The chromatograms were obtained from various gradient elution systems (GES) tested in order to establish the ideal conditions for the analysis of propolis extractive solution, using methanol and water: acetonitrile (97.5 : 2.5, v/v) as mobile phase. Gradient reversed phase chromatography was performed using a stainless steel column (250 x 4.6 mm i.d., 5 mum) filled with Chromsep RP 18 (Varian), column temperature at 30.0 +/- 0.1degreesC and detection at 310 nm. The main validation parameters of the method were also determined. The method showed linearity for chrysin in the range 0.24-2.4 mug mL(-1) with good correlation coefficients (0.9975). Precision and accuracy were determined. The obtained results demonstrate the efficiency of the proposed method. The analytical procedure is reliable and offers advantages in terms of speed and cost of reagents.
Resumo:
A sensitive, precise, and specific high-performance liquid chromatographic (HPLC) method was developed for the assay of gatifloxacin (GATX) in raw material and tablets. The method validation parameters yielded good results and included the range, linearity, precision, accuracy, specificity, and recovery. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The HPLC separation was carried out by reversed-phase chromatography on a C18 absorbosphere column (250 x 4.6 mm id, 5 pm particle size) with a mobile phase composed of acetic acid 50/o--acetonitrile-methanol (70 + 15 + 15, v/v/v) pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 287 nm. The calibration graph for GATX was linear from 4.0 to 14.0 mu g/mL. The interday and intraday precisions (relative standard deviation) were less than 1.05%.