966 resultados para lightning strike
Resumo:
The Beishan orogenic collage locates at the triple-joint among Xinjiang, Gansu, and Inner Mongolia Provinces, at which the Siberian, Tarim and North China plates join together. It also occupies the central segment of the southern Central Asian Orogenic Belt (CAOB). The main study area in the present suty focused on the southwest part of the Beishan Mountain, which can be subdivided into four units southernward, the Mazhongshan continental block, Huaniushan Arc, Liuyuan suture zone and Shibanshan-Daqishan Arc. 1. The Huaniushan Arc was formed by northernward dipping subduction from the Orcovician to Permian, in which volcanic rocks ranging from basic to acidic with island arc affinity were widely developed. The granitiod intrusions become smaller and younger southward, whichs indicates a southward rollback of slab. The granitiod intrusions are mainly composed of I type granites, and their geochemical compositions suggest that they have affinities of island arc settings. In the early Paleozoic(440Ma-390Ma). The Shibanshan-Daqishan Arc, however, were produced in the southernward dipping subduction system from Carboniferous to Permian. Volcanic rocks from basic to acidic rocks are typical calcic-alkaline rocks. The granitiod intrusions become smaller and younger northernward, indicating subdution with a northernward rollback. The granitiod intrusions mainly consist of I-type granites, of which geochemical data support they belong to island arc granite. 2. Two series of adakite intrusions and eruptive rocks have been discovered in the southern margin of the Huaniushan Island Arc. The older series formed during Silurian (441.7±2.5Ma) are gneiss granitoid. These adakite granites intruded the early Paleozoic Liuyuan accretionary complex, and have the same age as most of the granite intrusions in the Huanniushan Arc. Their geochemical compostions demonstrate that they were derived from partial melting of the subudcted oceanic slab. These characteristics indicate a young oceanic crust subduction in the early Paleozoic. The late stage adakites with compositons of dacites associate with Nb-enriched basalts, and island arc basalts and dacites. Their geochemistries demonstrate that the adakites are the products of subducted slab melts, whereas the Nb-enriched basalt is products of the mantle wedge which have metasomatized by adakite melts. Such a association indicates the existences of a young ocean slab subduction. 3. The Liuyuan suture zone is composed of late Paleozoic ophiolites and two series of accretionary complexes with age of early Paleozoic. The early Paleozoic accretionary complex extensively intruded by early Palozioc granites is composed of metamorphic clastics, marble, flysch, various metamorphic igneous rocks (ultramafic, mafic and dacite), and eclogite blocks, which are connected by faults. The original compositions of the rocks in this complex are highly varied, including MORB, E-MORB, arc rocks. Geochronological study indicates that they were formed during the Silurian (420.9±2.5Ma and 421.1±4.3Ma). Large-scale granitiods intruded in the accretionary complex suggest a fast growth effect at the south margin of the Huaniushan arc. During late Paleozoic, island arc were developed on this accretionary complex. The late Paleozoic ophiolite has an age of early Permian (285.7±2.2Ma), in which the rock assemblage includes ultra-mafic, gabbros, gabbros veins, massive basalts, pillow basalt, basaltic clastic breccias, and thin layer tuff, with chert on the top.These igneous rocks have both arc and MORB affinities, indicating their belonging to SSZ type ophiolite. Therefore, oceanic basins area were still existed in the Liuyuan area in the early Permian. 4. The mafic-ultramafic complexes are distributed along major faults, and composed of zoned cumulate rocks, in which peridotites are surrounded by pyroxenite, hornblendites, gabbros norite and diorite outward. They have island-arc affinities and are consistent with typical Alaska-type mafic-ultramafic complexes. The geochronological results indicate that they were formed in the early Permian. 5. The Liuyuan A-type granite were formed under post-collisional settings during the late Triassic (230.9±2.5Ma), indicating the persistence of orogenic process till the late Triassic in the study area. Geochronological results suggested that A-type granites become younger southward from the Wulungu A-type granite belt to Liuyuan A-type granite belt, which is in good agreement with the accretionary direction of the CAOB in this area, which indicate that the Liuyuan suture is the final sture of the Paleo-Asin Ocean. 6. Structural geological evidence demonstrate the W-E spreading of main tectonic terrenes. These terrenes had mainly underwent through S-N direction contraction and NE strike-faulting. The study area had experienced a S-N direction compression after the Permian, indicating a collisional event after the Permian. Based on the evidene from sedimentary geology, paleontology, and geomagnetism, our studies indicate that the orogenic process can be subdivided into five stages: (1) the pre-orogenic stage occurred before the Ordovicain; (2) the subduction orogenic stage occurred from the Orcovician to the Permian; (3) the collisional orogenic stage occurred from the late Permian to the late Triassic; (4) the post-collision stage occurred after the Triassic. The Liuyuan areas have a long and complex tectonic evolutional history, and the Liuyuan suture zone is one of the most important sutures. It is the finally suture zone of the paleo-Asian ocean in the Beishan area.
Resumo:
Central Xiemisitai is located on the northwest edge of the Junggar Basin, bounded on the north by Sawuer Mountain, and southward Junggar Basin. Geotectonically, it is within the Chengjisi-Ximisitai-Santanghu island arc of Late Paleozoic, between Siberian and Junggar plates. The volcanics in this area mainly consist of acidic volcanic lava, rock assemblage of esite, dacite, and rhyolite, and the transitional phase is comparatively developed. Besides, Si2O of volcanics here covers a large range of 53.91-79.28t %, K2O of 1.71-6.94t%, and Na2O of 2.29-5.45t%, which is a set of metaluminous- peraluminous high K calc-alkaline to calc alkaline mid-acidic volcanic series. In addition, the volcanics are potassic to high-potassic assemblage, with slight shoshonite in. The REE curve of volcanics in central Xiemisitai is rightward and smooth, inclining to LREE enrichment, which reveals the characteristics of island-arc volcanics. Through the lithology changing from neutral to acidic, the negative anomaly of Eu is increasing. The volcanics here deplete HFSE such as Nb, Ti, P, etc., but relatively rich in LILE like Rb, K, Th, etc., possessing geochemistry characteristics of arc volcanics, which means that the lava source region is watery, under the meta-somatic contamination of subducted components. Moreover, high Ba and Sr show volcanics in epicontinental arc environment, and their contemporaneous granitoid rocks are also marked with the characteristics of volcanic arc granite. In central Xiemisitai, the volcanics zircon age of volcanic rhyolite is 422.5Ma± 1.9Ma, mid-late Silurian. Only one sample zircon has been measured for the present, not very convincing, so volcanics here might not come from Devonian volcanism. Consequently, further confirming the volcanic age will play a key role in the research on the beginning of volcanism in Xiemisitai area and even North Xinjiang. This area includes three copper mineralization types: a) from andesite fracture; b) from rhyolite fracture broken zone, with the copper mineralization distributed by veins along the fissure; and c) from quartz veins. The mineralization of earth surface in S24 ore spot is intensive, and the primary geochemistry reconnaissance anomaly is fairly good. According to display data, the maximum content of Cu is as high as 0.9% and as low as 0.05%. Also, ore-control fracture structure is having a considerable scale in the strike of fracture both horizontally and vertically downwards, and the result of the geophysics stratagem EH-4 system reveals obvious low-resistivity anomaly. As a result, we believe that the S24 plot is expected to be a volcanic copper deposit target area.
Resumo:
Widespread black chert-shales occur in the Ediacaran-Cambrian(E-C) boundary successions along the flank of Yangtze Platform, South China, remarkable changes in sedimentology, geochemistry and biology were recorded. Although extensive studies were carried out upon this boundary succession, the origin of black chert-shales still remain controversial. This paper focuses on the E-C black chert-shales in western Hunan, South China, upon which detailed depositional and geochemical changes are documented, accordingly a depositional model for black chert-shales is proposed. Stratigraphic anatomy across the depositional strike demonstrates that the shallow-water Dengying dolostone along the platform margin sharply pass basinward into the Liuchapo chert successions, which indicate syndepositional extensional faulting at depth could have occurred along the platform margin. The deep-water Niutitang phosphorite-rich black shales are either underlain by the Dengying dolostones on the platform margin toward platform interior or directly by the Liuchaopo chert successions farther basinwards. By detailed investigation, silica chimneys are firsly identified approximately in the chert along platform margin; two types of silica chimneys, including mounded and splayed/funnelized chert(generally brecciated) bodies are further sorted out. The mounded chert are exitbited by domed or hummocky surfaces on the top and irregular spongy to digitiform internal fabrics; within the silica mounds, abundant original vesicles/voids and/or channels were mostly plugged by initial chalcedony, quartze crystals with minor dolomite and bladed barite crystals. Splayed/funnelized brecciated chert “intrusion” cross-cut the uppermost dolostones capping to the horizon underneath, and are directly overlain by the Niutitang phosphorite-rich black shales. Their similarities to the silica chimneys reported from the oceanic spreading centres suggest a similar origin responsible for these unique silica bodies which is also supported by the microthermonmetric data and element geochemistry. High P, Ba, Fe contents and positive correlation between Fe and TOC concentrations in the Niutitang black shales indicate a high palaeo-productivity in the Early Cambrian ocean. The low Th/U and the high V/Cr, V/Sc, V/(V+Ni) ratios in the black shales suggest an anoxic water condition during this interval. Furthermore, Positive Eu anomalies and high Ba contents in the sediments also imply a hydrothermal influence on the formation of Niutitang black shales. To better constrain the placement of deep-water successions straddling the E-C boundary and the timing of hydrothermal silica chimneys, sensitive high-resoluton ion microprobe(SHRIMP) U-Pb dating of zircon grains from tuffs within the chert succession of Liuchapo Formation at Ganziping was conducted and yields a weighted-mean 206Pb/238Pb age at 536.6±5.5Ma, younger than E-C boundary age(542.0±0.3Ma). This age combined with carbon isotopic data is then proposed to correspond to the U-Pb age of zircons(538.2±1.5Ma) from the Zhongyicun member of Meishucun Formation at Meishucun in eastern Yunna, thus, the E-C boundary in Gazngziping was placed between the Dengying formations and Liuchapo formatioms. therefore, the silica chimneys took place at the beginning of the Cambrian period. The temporal coincidence of silica chimneys and negative excursions of δ13C and δ34Spy pairs suggest hydrothermal activities were likely responsible for the isotopic changes. Under such a circumstance, vast amounts of greenhouse gases(CO2, CH4, H2S), with highly 13C-depleted carbon and 34S-depleted sulfur would be released into the ocean and atmosphere. A positive shift in δ34Scas and Δ34S values from the late Ediacaran to the Early Cambrian could be a reflection of enhanced bacterial sulfate reduction(BSR), strengthened by the intensified oceanic anoxia stimulated by hydrothermal activities. Based on the analyses of sedimentology and geochemistry, a model- “oceanic anoxia induced by hydrothermal–volcanic activies” was proposed to responsible for the formation of black chert-shales during this E-C transition. Under this case, hydrothermal-volcanic activies could release large large amount of greenhouse into atmosphere and metal micronutrients into the ocean, which may lead to global warming, stratified ocean, thereby a high palaeoproductivity; on the other hand, the massive releasing of reduced hydrothermal fluids with abundant H2S, could have in turn enhanced the ocean anoxia. All of these were favourable the for preservation of organic matter, and subsequent extensive deposition of black silica-shales.
Resumo:
The Eastern Himalayan Syntaxis (EHS) is one of the strongest deformation area along the Himalayan belt resulted from the collision between Indian plate and the Eurasian Plate since the 50~60Ma, and has sensitivity tracked and preserved the whole collisional processes. It should depend on the detail geological investigations to establish the deformational accommodate mode, and the uplift history, to elucidate the deep structure and the crust-mantle interaction of the Tibet Plateau of the EHS. The deep-seated (Main Mantle Thrusts) structures were exhumed in the EHS. The MMT juxtapose the Gangdese metamorphic basement and some relic of Gangdese mantle on the high Himalayan crystalline series. The Namjagbawa group which is 1200~1500Ma dated by U/Pb age of zircon and the Namla group which is 550Ma dated by U/Pb age of zircon is belong to High Himalayan crystalline series and Gangdese basement respectively. There is some ophiolitic relic along the MMT, such as metamorphic ocean mantle peridotite and metamorphic tholeiite of the upper part of ocean-crust. The metamorphic ocean mantle peridotites (spinel-orthopyroxene peridotite) show U type REE patterns. The ~(87)Sr/~(86)Sr ratios were, 0.709314~0.720788, and the ~(143)Nd/~(144)Nd ratios were 0.512073~0.512395, plotting in the forth quadrant on the ~(87)Sr/~(86)Sr-~(143)Nd/~(144)Nd isotope diagram. Some metamorphic basalt (garnet amphibolite) enclosures have been found in the HP garnet-kynite granulite. The garnet amphibolites can be divided two groups, the first group is deplete of LREE, and the second group is flat or rich LREE, and their ~(87)Sr/~(86)Sr, ~(143)Nd/~(144)Nd ratios were 0.70563~0.705381 and 0.512468~0.51263 respectively. Trace element and isotopic characteristics of the garnet amphibolites display that they formed in the E-MORB environment. Some phlogolite amphibole harzburgites, which exhibit extensive replacement by Phl, Amp, Tc and Dol etc, were exhumed along the MMT. The Phl-Amp harzburgites are rich in LREE and LILE, such as Rb, K etc, and depletes Eu (Eu~* = 0.36 ~ 0.68) and HFSE, such as Nb, Ta, Zr, Hf, P, Ti etc. The trace element indicate that the Phl-Amp harzburgites have island arc signature. Their ~(87)Sr/~(86)Sr are varied from 0.708912 to 0.879839, ~(143)Nd/~(144)Nd from 0.511993 to 0.512164, ε Nd from- 9.2 to - 12.6. Rb/Sr isochrone age of the phlogolite amphibole harzburgite shows the metasomatism took place at 41Ma, and the Amp ~(40)Ar/~(39)Ar cooling age indcate the Phl-Amp harzburgite raising at 16Ma. There is an intense crust shortening resulted from the thrust faults and folds in the Cayu block which is shortened more 120km than that of the Lasha block in 35~90Ma. With the NE corner of the India plate squash into the Gangdese arc, the sinistral Pai shear fault and the dextral Aniqiao shear fault on the both sides of the Great bent of Yalun Zangbu river come into active in 21~26Ma. On the other hand, the right-lateral Gongrigabu strike-slip faults come into activity at the same period, a lower age bound for the Gongrigabu strike-slip fault is estimated to be 23~24Ma from zircon of ion-probe U/Pb thermochronology. The Gongrigabu strike-slip faults connect with the Lhari strike-slip fault in the northwestern direction and with the Saganing strike-slip at the southeastern direction. Another important structure in the EHS is the Gangdese detachment fault system (GDS) which occurs between the sedimental cover and the metamorphic basement. The lower age of the GDS is to be 16Ma from the preliminary 40Ar/39Ar thermochronology of white mica. The GDS is thought to be related to the reverse of the subducted Indian crust and the fast uplift of the EHS. Structural and thermochronology investigation of the EHS suggest that the eastern Tibet and the western Yunnan rotated clockwise around the EHS in the period of 35~60Ma. Later, the large-scale strike-slip faults (RRD, Gaoligong and Saganing fault) prolongate into the EHS, and connect with the Guyu fault and Gongrigabu fault, which suggest that the Indianchia block escape along these faults. Two kind of magmatic rocks in the EHS have been investigated, one is the mantle-derived amphibole gabbro, dioposide diorite and amphibole diorite, another is crust origin biotit-garnet adamellite, biotit-garnet granodiorite and garnet-amphibole-biotite granite. The amphibole gabbro dioposite diorite and amphibole diorite are rich in LREE, and LILE, such as Ba, Rb, Th, K, Sr etc, depleted in HFSE, such as Nb, Ta, Zr, Hf, Ti etc. The ratio of ~(87)Sr/~(86)Sr are from 0.7044 to 0.7048, ~(143)Nd/~(144)Nd are from 0.5126 to 0.5127. The age of the mantle origin magamatic rocks, which result from the partial melt of the raising and decompression anthenosphere, is 8Ma by ~(40)Ar/~(39)Ar dating of amphibole from the diorite. The later crust origin biotite-garnet adamellite, biotite-garnet granodiorite and garnet-amphibole-biotite granite are characterized by aboudance in LREE, and strong depletion of Eu. The ratios of ~(87)Sr-~(86)Sr are from 0.795035 to 0.812028, ~(143)Nd/~(144)Nd from 0.51187 to 0.511901. The ~(40)Ar/~(39)Ar plateau age of the amphibole from the garnet-amphibole-biotite granite is 17.5±0.3Ma, and the isochrone age is 16.8±0.6Ma. Their geochemical characteristics show that the crust-derived magmatic rocks formed from partial melting of the lower curst in the post-collisional environment. A group of high-pressure kaynite-garnet granulites and enclave of high-pressure garnet-clinopyroxene grnulites and calc-silicate grnulites are outcroped along the MMT. The peak metamorphic condition of the high-pressure granulites yields T=800~960 ℃, P=1.4~1.8Gpa, corresponding the condition of 60km depth. The retrograde assemblages of the high-pressure grnulites occur at the condition of T=772.3~803.3 ℃, P=0.63~0.64Gpa. The age of the peak metamorphic assemblages are 45 ~ 69Ma indicated by the zircon U/Pb ion-plobe thermochronology, and the retrograde assemblage ages are 13~26Ma by U/Pb, ~(40)Ar/~(39)Ar thermochronology. The ITD paths of the high-pressure granulites show that they were generated during the tectonic thickening and more rapid tectonic exhumation caused by the subducting of the Indian plate and subsequent break-off of the subducted slab. A great deal of apatite, zircon and sphene fission-track ages, isotopic thermochronology of the rocks in the EHS show that its rapid raising processes of the EHS can be divided into three main periods. There are 35~60Ma, 13~25Ma, 0~3Ma. 3Ma is a turn in the course of raising in the EHS which is characterized by abruptly acceleration of uplifting. The uplift ratios are lower than 1mm .a~(-1) before 3Ma, and higher than 1mm .a~(-1) with a maximum ratio of 30mm .a~(-1) since 3Ma. The bottom (knick point) of the partial anneal belt is 3.8km above sea level in the EHS, and correspond to age of 3Ma determined by fission-track age of apatite. The average uplift ratio is about 1.4 mm .a~(-1) below the knick point. The EHS has raised 4.3km from the surface of 2.36km above sea level since 3Ma estimated by the fossil partial anneal belt of the EHS. We propose a two-stage subduction model (B+A model) basing on Structural, thermochronological, magmatical, metamorphic and geophysical investigations of the EHS. The first stage is the subduction of the Indian continental margin following after the subduction of the Tethys Ocean crust and subsequent collision with the Gangdese arc, and the second stage is the Indian crust injecting into the lower crust and upper mantle of the Tibet plateau. Slab break-off seems to be occurred between these two stages.
Resumo:
Based on geodynamic analysis of sedimentary basins, combined sedimentology with structural geology and other methods, the author studied the Honghe basin located in Yunnan province of Southwestern China. Sandstone slice grain size analysis, combined with field geology and indoors study indicate that a set of inland alluvial fan diposits, fluvial deposites, delta deposits and some lacustrine sediments are in Honghe basin. Studying on shape of the Honghe basin, sedimentary and structural characteristic and distribution of different kinds of conglomerate and its structural significance, we hold the idea that the formation and evolution of Honghe basin are controlled by the activity of Red River faut. Correlation of lithostratic cross section in Honghe basin and studying on activity of Red River fault indicate that Honghe basin was formed in two stages. It is a complex basin constitutes of the first-stage trans-releasing basin and the second-stage trans-downfaulted basin. Due to the uplift of Qinghai-Xizang plateau and deformation of orogeny, the western Yunnan and adjacent area move to SE direction as a result of Tectonic Escape. Right lateral strike slip occurred along Red River fault, trans-releasing basin formed at the bend part of the fault due to stress relexation. As the block escaping, it moves away from the other block of the Red River fault, the upper block move down obliquely and trans-downfaulted basin formed. Combined the age of phytolite and regional structural events, we think the first-stage transreleasing basin was formed in late Miocene, on the other words, the dextral strike slip of Red River fault may began in late Miocene (10-7Ma). The second-stage trans-downfaulted basin may be formed in early stage of Pliocene (about 4.7Ma). Subsequently, the bilateral faults dipping to the inside of the plateau and thrusting outwards occurred in the marginal region of Qinghai-Xizang plateau during its uplifting as a fan-shaped mountain body, this results in the uplift of the strata to the east of Red River fault and supply large quantity of provenance for the Honghe basin. In last Pliocene (about 3Ma), strong uplift of Qinghai-Xizang plateau leads to massive clastic sediment entered Honghe basin and causes its closure. As a kind of trans-tentional basin, trans-releasing basin is different to pull-apart basin. The author compared the Mosha trans-releasing basin with Jinggu pull-apart basin in SW Yunan, China, and described their character correspondingly. Otherwise, the author combined the predecessors' studding with conclusion of own study, discussed the kinematics of Ailaoshan-Red River belt in Cenozoic, and the relationship between the formation of Honghe basin and uplifting of Qinghai-Xizang plateau.
Resumo:
The Study on rheology of the lithosphere and the environments of the seismogenic layer is currently the basic project of the international earthquake research. Yunnan is the ideal place for studying this project. Through the multi-disciplinary comprehensive study of petrology, geophysics, seismo-geology, rock mechanics, etc., the depth-strength profiles of the lithosphere have been firstly constructed, and the seismogenic layer and its geophysical and tectonic environments in Yunnan have been systematically expounded in this paper. The related results achieved are of the important significances for further understanding the mechanism of strong earthquake generation, dividing the potential foci and exposing recent geodynamical processes in Yunnan. Through the comprehensive contrast of the metamorphic rocks in early and middle Proterozoic outcropping on the surface, DSS data and experimental data of rock seismic velocity under high temperature and high pressure, the petrological structure of the crust and upper mantle has been studied on Yunnan: the upper, middle and lower crust is composed of the metamorphic rocks of greenschist, amphibolite and granulite facies, respectively or granitoids, diorites and gabbros, respectively, and the upper mantle composed of the peridotites. Through the contrast studies of the heat flow and epicenters of the strong earthquakes, the distribution of the geotemperature and the data of focal depth, the relationship of between seismicity and geothermal structure of the lithosphere in Yunnan has been studied: the strong earthquakes with magnitude M ≥ 6.0 mainly take place at the geothermal gradient zone, and the seismic foci densely distribute between 200~500 ℃ isogeotherms. On the basis of studies of the rock properties and constituents of the crust and upper mantle and geothermal structure of the lithosphere, the structure of the rheological stratification of the lithosphere has been studied, and the corresponding depth-strength profiles have been constructed in Yunnan. The lithosphere in majority region of Yunnan has the structure of the rheological stratification, i.e. the brittle regime in the upper crust or upper part of the upper crust, ductile regime in the middle crust or lower part of the upper crust to middle crust, ductile regime in the lower crust and ductile regime in the subcrustal lithosphere. The rheological stratification has the quite marked lateral variations in the various tectonic units. The distributions of the seismogenic layer have been determined by using the high accurate data of focal depth. Through the contrast of the petrological structure, the structure of seismic velocity, electric structure, geotemperature structure, and rheological structure and the study of the focal mechanism in the seismogenic layer, the geophysical environments of the seismogenic layer in Yunnan have been studied. The seismogenic layer in Yunnan is located at the depths of 3 ~ 20 km; the rocks in the seismogenic layer are composed of the metamorphic rocks of greenschist to amphibolite facies (or granites to diorites); the seismogenic layer and its internal focal regions of strong earthquakes have the structure of medium properties with the relatively high seismic velocity, high density and high resistivity; there exists the intracrustal low seismic velocity and high conductivity layer bellow the seismogenic layer, the geotemperature is generally 100~500 ℃ in the depth range in which the seismogenic layer is located. The horizontal stress field predominates in the seismogenic layer, the seismogenic layer corresponds to the brittle regime of the upper crust or brittle regime of the upper crust to semibrittle regime of the middle crust. The formation of the seismogenic layer, preparedness and occurrence of the strong earthquakes is the result of the comprehensive actions of the source fault, rock constituent, structure of the medium properties, distribution of the geotemperature, rheological structure of the seismogenic layer and its external environments. Through the study of the structure, active nature, slip rate, segmentation of the active faults, and seismogenic faults, the tectonic environments of the seismogenic layer in Yunnan have been studied. The source faults of the seismogenic layer in Yunnan are mainly A-type ones and embody mainly the strike slip faults with high dip angle. the source faults are the right-lateral strike slip ones with NW-NNW trend and left-lateral strike slip ones with NE-NEE trend in Southwestern Yunnan, the right-lateral strike slip ones with NNW trend and left-lateral strike slip ones with NNE trend (partially normal ones) in Northwestern Yunnan, the right-lateral strike slip ones with NWW trend in Central Yunnan and left-lateral strike slip ones with NW-NNW trend in Eastern Yunnan. Taking Lijiang earthquake with Ms = 7.0 for example. The generating environments of the strong earthquake and seismogenic mechanical mechanism have been studied: the source region of the strong earthquake has the media structure with the relatively high seismic velocity and high resistivity, there exists the intracrustal low velocity and high conductivity layer bellow it and the strong earthquakes occur near the transitional zone of the crustal brittle to ductile deformation. These characteristics are the generality of the generating environments of strong earthquakes. However, the specific seismogenic tectonic environments and action of the stress field of the seismic source in the various regions, correspondingly constrains the dislocation and rupture mechanical mechanism of source fault of strong earthquake.
Resumo:
Since the discovery of coesite-bearing eclogites in Dabie and Sulu region over ten years ago, the Dabie collisional orogen has been the "hot-spot" across the world. While many great progresses have been made for the last decade in the researches on the Dabie and Sulu UHP metamorphic rocks in the following fields, such as, petrology, mineralogy, isotope chronology, and geochemistry, the study of the structural geology on the Dabie orogen is still in great need. Thrust and nappe tectonics commonly developed in any collisional orogenic belt during the syncollisional process of the orogen. It is the same as the Dabic collisional orogen is concerned. The paper put much stress on the thrust and nappe tectonics in the Dabic orogenic belt, which have been seldom systematically studied before. The geometric features including the division and the spatial distribution of various thrust and nappe tectonics in the Dabie orogen have been first studied, which is followed by the detailed studies on their kinematic characteristics in different scales varying from regional tectonics to microtectonics. In the thesis, new deformation ages have been obtained by the isotopic methods of ~(40)Ar-~(39)Ar, Sm-Nd and Rb-Sr minerals-whole rock isochrons on the mylonites formed in three ductile shear zones which bounded three different major nappes in the Dabie collisional orogenic belt. And the petrological, geochemical characteristics of some metamorphic rocks as well as the geotectonics of their protoliths, which have also deformed in the ductile shear zone, are analyzed and discussed. In the paper, twelve nappes in the Dabie orogen are first divided, which are bounded by various important NWW or NW-strike faults and three NNE-strike faults. They are Shangcheng Nappe, Huoshan Nappe, Yuexi Nappe, Yingshanjian-Hengzhong Nappe, Huangzhen Nappe, Xishui-Huangmei Nappe, Zhoudang Nappe, Suhe-Huwan Nappe, Xinxian Nappe, Hong'an Nappe, Mulan Nappe and Hhuangpi-Susong Nappe. In the Dabie orogen, three types of thrust and nappe tectonics belonging to two stages have been confirmed. They are: (1) early stage ductile thrust -nappe tectonics which movement direction was top-to-the-south; (2) late stage brittle to ductile-brittle thrust-nappe tectonics which are characterized by double-vergence movement, including top-to-the-north and top-to-the-south; (3) the third type also belongs to the late stage which also characterized by double-vergence movement, including top-to-the-east and top-to-the-west, and related to the strike-slip movement. The deformation ages of both Wuhe-Shuihou ductile shear zone and Taihu-Mamiao ductile shear zone have been dated by ~(40)Ar-~(39)Ar method. ~(40)Ar/~(39)Ar plateau ages of biotite and mica from the mylonites in these two shear zones are 219.57Ma and 229.12Ma. The plateau ages record the time of ductile deformation of the ductile shear zones, which made the concerned minerals of the mylonites exhume from amphibolite facies to the middle-upper crustal conditions by the early stage ductile thrust-nappe tectonics. The mineral isochons of Sm-Nd and Rb-Sr dating on the same mylonite sample of the metamafic rocks are 156.5Ma and 124.56Ma respectively. The two isochron ages suggest that the mylonitic rock strongly deformed in the amphilbolite facies at 156Ma and then exhumed to the upper crustal green schist condition at 124Ma with the activities of the Quiliping-Changlinggang ductile shear zone which bounded to the southen edge of Xinxian Nappe. Studies of the petrological and geochemical characteristics of some meta-mafic rocks and discussion on the geotectonics of their protoliths indicate that their protoliths were developped in an island arc or back-arc basin or active continental margin in which calc-alkline basalts formed. This means that arc-accretion orogeny had evolved in the margins of North china plate and/or Yangtze plate before these two plates directly collided with each other during the evolution process of Dabie orogen. Three-stage evolution of the thrust-nappe tectonics in Dabie collisional orogen has been induced based on the above-mentioned studies and previous work of others. And a possible 3-stage exhumation model (Thrust-Positive Flower Structure Model) has also been proposed.
Resumo:
Directed by the theory of "Collision Tectonic Facies", the tectonic setting and dynamic mechanism of the formation of Songliao basin in late Mesozoic (J_3-K_1) are studied in the present thesis with the methods of petrology, petrochemistry, geochemistry and isotopic geochronology. The research contents in this paper include as followings. Firstly, the general tectonic frame is made up of different tectonic facies formed from Mid-late Proterozoic to Mesozoic, which are Huabei plate, the Chengde-Siziwangqi melange (Pz_1), the Wenduermiao magmatic arc (Pz_1), the Hegenshan-Chaogenshan melange (Pz_2), the accretion arec (Pz_1-P), the Raohe-Hulin melange (Mz), the magmatic arc (Mz) and the pull-apart basin on the magmatic arc (Mz). Secondly, the volcanic rock assemblages of Songliao basin and its adjacent area in late Mesozoic is the typical calc-alkaline of the magmatic arc. The types of volcanic rocks in the study area include basalts, basaltic andesites, andesites, dacites and rhyolites, and basic-intermediate volcanic rocks have higher alkalinity. The volcanic rock series in this area is the high-K calc-alkaline series. Thirdly, the total REE of volcanic rocks in Songliao basin and its adjacent area is higher than that of the chondrite. The pattern of the REE normalized by the chondrite shows the characteristics similar to that of the typical island arcs or the active continental margins in the earth, that is enrichment of LREE and depletion of Eu. The spider-diagram of the trace element normalized by the primitive mantle also expresses the similar features to that of the typical island arcs or the active continental margins, it has distinctive valleies of Nb, Ta, Sr, P, and Ti, as well as the peaks of La, Ce, Th, U, and K. The incompatible elements show that the high field strength elements, such as Nb, Ta, Ti, and P, are depletion while the low field strength elements, such as K, U, Pb, and Ba, are enrichment. These features are similar to those of orogenic volcanic rocks and imply the formation of the volcanic rocks in this area is related to the subduction. The degrees of both the enrichment of the HFS elements and depletion of the LFS elements become more obvious from basic to acid volcanic rocks, which suggests crustal contamination enhances with the magmatic crystallization and fractionation. The concentration of the compatible elements is W-shape, and anomalies in Cr and Ni suggest there is the contamination during the magmatic crystallization and fractionation. Fourthly, the isotopic age data prove the volcanic activity in the Songliao basin and its adjacent area started in the early-middle Jurassic, and ended in the end of the early Cretaceous-the beginning of the Cretaceous. The volcanism summit was the late Jurassic-the early Cretaceous (100 - 150Ma). Finally, the tectonic setting of volcanism in the late Mesozoic was magmatic arc, which originated the subduction of Raohe-Hulin trench to the northwest Asian plate. The subduction began in the middle Jurassic, and the collision orogenesis between the Sikhote-Alin arc and Asian continent was completed in the end of the early Cretaceous-the beginning of the late Cretaceous. The results of above tectonic processes were finally to format Nadanhada orogenic belt symbolized by the Raohe-Hulin suture or melange belt. The violently oblique movement of the Izanagi plate toward Asian plate in the late Mesozoic was the dynamic mechanism of above tectonic processes. At the same tome, the left-lateral strike-slip shear caused by the oblique movement of the Izanagi plate produced a series of strike-slip faults in east Asian margin, and the large scale displacements of these strike-slip faults then produced the pull-apart basing or grabens on the magmatic arc. Conclusively, the tectonic setting during the formation of the grabens of Songliao basin in the late Mesozoic was magmatic arc, and its dynamic mechanism was the pull-apart. In a word, there was a good coupling relation among the oblique subduction of the oceanic plate, collisional orogene between island arc and continental plate, strike-slip shear of the faults and the formation of the grabens in Songliao basin and its adjacent area in late Mesozoic. These tectonic processes were completed in the unoin dynamic setting and mechanism as above description.
Resumo:
As powerful tools to study the lithosphere dynamics, the effective elastic thickness (Te) as well as the envelope of yielding stress of lithosphere have been attracted great attention of geoscientists in the past thirty years. The oceanic lithosphere, contrary to the continental lithosphere, has more fruits for its simple structures and evolution process. In continent, the lithosphere commonly is complex and variable in the rheological, thermal structures, and has a complicated history. Therefore, the application of the effective elastic thickness in continent is still a subject to learn in a long time. Te, with the definition of the thickness of an elastic plate in theory flexured by the equal benging of the real stress in the lithosphere plate (Turcotte, 1982), marks the depth of transition between elastic and fluid behaviors of rocks subjected to stress exceeding 100 MPa over the geological timescales (McNutt, 1990). There are three methods often adapted: admittance or isostatic response function, coherence and forwarding. In principle, the models of Te consist of thermal-rheological, non-linear Maxwell, non-linear work hardening and rheological layered models. There is a tentative knowledge of Te that it is affected by the following factors: crustal thickness, crust-mantle decoupling, plate bending, boundary conditions of plate (end forces and bending moments), stress state, sedimentary layer, faulting effect, variation in the mountain belts' strike, foreland basin, inheritance of tectonic evolution, convection of mantle, seismic depth and lithosphere strength. In this thesis, the author introduces the geological sketch of the Dabie collisional orogenic belt and the Hefei Basin. The Dabie Mts. is famous for the ultra-high pressure metamorphism. The crustal materials subducted down to the depth of at least 100 km and exhumed. So that the front subjects arise such as the deeply subduction of continent, and the post-collisional crust-mantle interaction. In a geological journey at June of 1999, the author found the rarely variolitic basaltic andesite in the Dabie Mts. It occurs in Susong Group, near Zhifenghe Countryside, Susong County, Anhui Province. It is just to the south of the boundary between the high-grade Susong melange and the ultra-high grade South Dabie melange. It has a noticeable knobby or pitted appearance in the surface. The size of the varioles is about 1-4 mm. In hand-specimen and under microscope, there are distinct contacts between the varioles and the matrice. The mineralogy of the varioles is primarily radiate plagioclase, with little pyroxene, hornblende and quartz. The pyroxene, hornblende and quartz are in the interstices between plagioclase. The matrix is consisted of glass, and micro-crystals of chlorite, epidote and zoisite. It is clearly subjected and extensive alteration. The andesite has an uncommon chemical composition. The SiO_2 content is about 56.8%, TiO_2 = 0.9%, MgO = 6.4%, (Fe_2O_3)_(Total) = 6.7% ~ 7.6%, 100 Mg/(Mg+Fe) = 64.1 ~ 66.2. Mg# is significantly high. The andesite has higher abundances of large-lithophile trace elements (e.g. K, Ba, Sr, LREE), e.g. La/Nd = 5.56-6.07, low abundances of high-strength-field elements (HFSE, e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subducted-related magmas (Pearcce, 1982; Sun and McDonaugh, 1989). In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a characteristic of the continental margins (Pearce, 1982). There has a strongly enrichment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)_N is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)_N = 28.63-36.74, (La/Y)_N = 70.33 - 82.84. The elements Y and Yb depleted greatly, Y < 20 ppm, Y_N = 2.74-2.84, Yb_N = 2.18 - 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is -18.7 ~ -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the basaltic andesite was resulted from the post-collisional crust-mantle interaction between the subducted Yangze carton and the mantle of Sino-Korea carton. To obtain the Te of the lithosphere beneath the Dabie Mts. and the Hefei Basin, the author applies the coherence method in this thesis. The author makes two topography-gravity profiles (profiles 7~(th) and 9~(th)) across the Dabie Mts. and the Hefei Basin, and calculates the auto-coherence, across coherence, power spectrum, across power spectrum of the topography and gravity of the two profiles. From the relationships between the coherence and the wave-number of profiles. From the relationships between the coherence and the wave-number of profiles 7~(th) and 9~(th), it is obtained that the characteristic wavelengths respectively are 157 km and 126 km. Consequently the values of effective elastic thickness are 6.5 km and 4.8 km, respectively. However, the Te values merely are the minimum value of the lithosphere because the coherencemethod in a relative small region will generate a systemic underestimation. Why there is a so low Te value? In order to check the strength of the lithosphere beneath the Dabie Mts., the authore tries to outline the yielding-stress envelope of the lithosphere. It is suggested that the elastic layers in the crust and upper mantle are 18 km and 35 km, respectively. Since there exist a low viscosity layer about 3-5 km thickness, so it is reasonable that the decoupling between the crust and mantle occurred. So the effective thickness of the lithosphere can be estimated from the two elastic layers. Te is about 34 km. This is the maximum strength of the lithosphere. We can make an approximately estimation about the strength of the lithosphere beneath the Dabie Mts.: Te is about 20-30 km. The author believes that the following factors should be responsible for the low Te value: (1) the Dabie Mts. has elevated strongly since K_3-J_1. The north part of the Dabie Mts. elevates faster than the south part today; (2) there occur large active striking faults in this area. And in the east, the huge Tan-Lu striking fault anyway tends to decrease the lithosphere strength; (3) the lithosphere beneath the Dabie Mts. is heter-homogeneous in spatio-temporal; (4) the study area just locates in the adjacent region between the eastern China where the lithosphere thickness is significantly reduced and the normal western China. These factors will decrease the lithosphere strength.
Resumo:
The author selected the geological and geochemical characteristics and the genesis of the Dazhuangzi gold deposit in the Pingdu City as the central content of the study. The author summarized geological features of the other gold deposits formed within the same geological setting along the margin of the Jiaolai pull-apart basin and compared these gold deposits with the Dazhuangzi gold deposit. On the basis of the first-hand data obtained from field investigation and from mining production reports, ore-controlling structures, geological characteristics and mineralization regularities of the Dazhuangzi gold deposit are studied in detail. According to the analyzing results of petrochemistry, trace element, rare earth element and fluid inclusion etc., the geochemical characteristics, the genesis and the ore-forming material source of the Dazhuangzi gold deposit and that of the other similar gold deposits along the margin of the Jiaolai Basin are proposed. The study results suggest that the Dazhuangzi gold deposit belongs to the typical interstratified glide breccia type gold deposit, which is controlled by the interstratified glide fault structure located along the margin of the Mesozoic pull-apart Jiaolai basin. The interstratified glide fault structure is in the outer part of unconformity belt between the overlying strata and the basement of the pull-apart basin, being along the marble strata of the Jingshan group. The formation of the ore-controlling structure is related closely with the evolution of the Jiaolai Basin in the Mesozoic. The ore-controlling structure underwent the structural stress changes from compressive to tensional and then to compressive stress with strike slipping features sequentially, which were coincided with the regional tectonic stress evolution. The interstratified glide breccia type gold mineralization mainly occurs in the siliceous-marble breccias and cataclastic rocks within the interstratified glide fault structure. The gold minerogenetic epoch is later than 120Ma when the ore-controlling structure was tensioning and strike-slipping. The occurrences of the ore controlling structure and the gold ore bodies are the same as that of the unconformity belt. The geological and geochemical studies show that the source of the ore-forming material is alike with that of the volcanic rocks of the Qingshan formation, which is widespread in the Jiaolai Basin. Both of them came from the deep crust or even the upper mantle. Based on the geological characteristics and the minerogenetic regularities of the Dazhuangzi gold deposit, a genetic model of the deposit is constructed. In addition, the author used the remote sensing image and exploration results of geochemical and geophysical methods to point out several prospecting areas for further exploration. Through comprehensive study on the interstratified glide fault structure and on the interstratified glide breccia type gold deposits along the Jiaolai pull-apart basin, three types of interstratified glide structures and related gold mineralization are set up according to evolution and distribution of main fault as well as related secondary faults in time and space. They are named as Penjiakuang type, Dazhuangzi type and Fayunkuang type. The author summarized up the minerogenetic characteristics and regularities controlled by these three different types of interstratified glide structures respectively, and set up a general minerogenetic model of the interstratified glide breccia type gold deposit.
Resumo:
The East Kunlun area of Xinjiang (briefly EKAX) is the western part of broadly speaking East Kunlun orogenic zone. The absence of geological data (especially ophiolites) on this area has constrained our recognition to its geology since many years. Fund by National 305 Item (96-915-06-03), this paper, by choosing the two ophiolite zones (Muztag and Southwestern Margin of Aqikekule Lake ophiolite zones) exposed at EKAX as the studied objects and by the analysis of thin section, electron probe, XRF, ICP-MS, SEM and Sm-Nd isotope, totally and sys ematically dealt with the field geological, petrological, minerological, petrochemical and geochemical characteristics (including trace, rare earth element and Sm-Nd isotope) and the tectonic setting indicated by them for each ophilite zone. Especially, this paper discussed the trace and rare earth element patterns for metamorphic peridotites, their implications and related them to the other components of ophiolite in order to totally disclose ophiolite origins. Besides, this paper also studied the petrological, geochemical and paleobiological characteristics for the cherts coexsisted with the Muztag ophiolite and the tectonic setting indicated by them. Based on these, the author discussed the tectonic evolution from Proterozoic to Permian for this area. For Muztag ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① outcropped along the Muztag-Jingyuhu fault with west-to-east strike, the ophiolite is composed of such three components as metamorphic peridotites, cumulates and volcanic rocks; ② metamophic peridotites consist of such types as lherzolites, serpentinized lherzolites and serpentinites, only pyroxenites is seen of cumulates and volcanic rocks include basalts, basaltic andesites and andesites; ③ mineralogical data on this ophiolite suggest it formed in supra-subduction zone (SSZ)environment, and its mantle wedge is heterogeneous; ④ whole-rock TiO_2 and Al_2O_3 of metamorphic peridotites indicate their original environment with the MORB and SSZ characteristics; ⑤ metamorphic peridotites have depleted LREE and flat REE patterns and volcanic rocks have enriched LREE patterns; ⑥ trace element characteristics of metamorphic peridotites imply that they had undergone Nb and Ta enrichment event after partial melting; ⑦ trace element characteristics of volcanic rocks and their tectonic diagrams show they are formed in the spreading and developed island arc environment with back-arc basin, such as rifted island arc, which is supported by the ε_(Nd)(t) -2.11~+3.44. In summary, the above evidence implies that Muztag ophiolite is formed in SSZ environment, where heterogeneous mantle wedge was metasomatised by the silica-enriched melt from subducted sediments and/or oceanic crust, which makes the mantle wedge enriched again, and this enriched mantle wedge later partially melted to form the volcanic rocks. For Southwestern Margin of Aqikekule Lake ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① it outcropped as tectonic slices along the near west-to-east strike Kunzhong fault and is composed of metamorphic perodotties, cumulates and volcanic rocks, in which, chromites are distributed in the upper part of metamorphic peridotites as pods, or in the lower part of cumulates as near-strata; ② metamorphic peridotites include serpentinites, chromite-bearing serpentinites, thlorite-epidote schists and chromitites, of which, chromitites have nodular and orbicular structure, and cumulates include pyroxenits, serpentinites, chromite-bearing serpentinites, chromites and metamorphically mafic rocks and only basalts are seen in volcanic rocks; ③ Cr# of chromites suggest that they formed in the SSZ and Al_2O_3 and TiO_2 of metamorphic peridotites also suggest SSZ environment; ④metamorphic peridotites have V type and enriched LREE patterns, cumulates have from strongly depleted LREE, flat REE to enriched LREE patterns with universally striking positive Eu anomalies and basalts show flat REE or slight enriched LREE patterns with no Eu anomalies; ⑤ trace element and Sm-Nd isotope characteristics of metamorphic peridotites imply their strikingly heterogeneous mantle character(ε_(Nd)(t)+4.39~+26.20) and later Nb, Ta fertilization; ⑥ trace element characteristics of basalts and their tectonic diagrams show they probably formed in the rifted island arc or back-arc basin enviromnent. In summary, the above evidence shows that this ophiolite formed in the SSZ environment and melts from subudcted plate are joined during its formation. Rare earth element, whole-rock and sedimentary characteristics of cherts with the Muztag ophiolite show that they formed in the continental margin environment with developed back-arc basin, and radiolarias in the cherts indicate that the upper age of Muztag ophiolite is early carboniferous. Based on the accreted wedge models of Professor Li Jiliang for Kunlunshan Mountain and combined with study on the two typical ophiolite profiles of EKAX, the author discussed the tectonic evolution of EKAX from Proterzoic to Permian.
Resumo:
The Namche Barwa metamorphic rock indenter is a part of the Indian plate. The Aniqiao fault, a northeastern striking shear zone, is the eastern boundary of the Namche Barwa metamorphic rock indenter. The activities of the Aniqiao fualt reflects the history of structure deformation and uplift of the Namche Barwa metamorphic rock indenter. In this dissertation, studied the history of activities of the Aniqiao fault, I study the deformation of the Namche Barwa metamorphic rock indenter based on which, I try to discuss the history of action and deformation of the eastern Tibet. The Aniqiao fault composes of mica quartz schist. With observing in the field and by the microscope, there are at least two stages of deformation. The earlier is right lateral striking, the later is normal striking. The biotite, in the hornblende biotitic mylonite in western footwall, the muscovite and sericite, in the mica quartz schist in eastern hangingwall, show 4 plateau and isochron ages: 3.7-3.3Ma, 6.8-6.4Ma, 13.4-13.2Ma, 23.9Ma, by ~(40)Ar/~(39)Ar. Combine the characteristics of kinematics with the characteristics of isotopic ages, this dissertation figured three stages of deformation: in 23.9Ma and 13.4-13.2 Ma, the Aniqiao fault undertook twice strike-slip deformation; in 6.8Ma-6.4Ma, the Aniqiao fault occurred normal strike deformation; in 3.7-3.3Ma, there was another thermal case which maybe relating to uplift. Combine the deformation of the Aniqiao fault and the deformation of the western boundary fault of the Namche Barwa metamorphic rock indenter, this dissertation considers that the Namche Barwa metamorphic rock indenter has occurred three defomational cases during the period of Oligocene and Quaternary: in 23Ma and 13Ma, the Namche Barwa metamorphic rock indenter wedged into the Gangdisi granite zone; from 6-7Ma, the Namche Barwa metamorphic rock indenter begins to uplift. From 6-7Ma, the Namche Barwa metamorphic rock indenter must has been occurred multi-stage uplifting. The indentation of the Namche Barwa metamorphic rock indenter is correspond to the structure escape of the Chuanxi, Dianxi blocks. In the surface deformation, the movement of these blocks are very harmonious.
Resumo:
Based on multi-principle (such as structures, tectonics and kinematics) exploratory data and related results of continental dynamics in the Tibetan plateau, the author reconstructed the geological-geophysical model of lithospherical structure and tectonic deformation, and the kinetics boundary conditions for the model. Then, the author used the numerical scheme of Fast Lagrangian Analysis of Continua (FLAC), to stimulate the possible process of the stress field and deformational field in the Tibetan plateau and its adjacent area, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. With the above-mentioned results, the author discussed the relationship between crustal movement in shallow layer and the deformational process in interior layers, and its possible dynamic constraints in deep. At the end of the paper, an integrative model has been put forward to explain the outline images of crust-mantle deformation and coupling in the Tibetan Plateau. (1) The characteristics of crust-mantle structure of the Tibetan plateau have been shown to be very complex, and vertical and horizontal difference is significant. The general characteristics of crust-mantle of the Tibetan plateau may be that it's layering in depth direction, and shows blocking from south to north and belting from east to west, mainly according to the results of about 20 seismic sections, such as wide-angle seismic profiles, CMP, seismic tomography and so on. (2) The crust had shortened about 2200km, while the shortening is different for different block from south to north in the Tibetan plateau. It is about 11.5mm/a in Himalayan block, about 9.0mm/a in Lhas-Gangdese block, about 7.0mm/a in Qiangtang block and Songpan-Ganzi-Kekexili block, about 8.0mm/a in Kunlun-Qaidam, and about ll.Omm/a in Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. Which - in demonstrates the shortening rate decreases from south to north, but this rate increases near the north edge of the Tibetan plateau. The crust thickening rate is about 0.4mm/a in the whole Tibetan plateau; and this rate is about 0.5mm/a in Himalayan block, about 0.4mm/a in Lhas-Gangdese block, about 0.3mm/a in Qiangtang block, about 0.2mm/a in Songpan-Ganzi-Kekexili block and about O.lmm/a in Kunlun-Qaidam-Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. This implies that the thickening rate decreases in the blocks of the Tibetan plateau. From south to north, the displacement of eastern boundary in the Tibetan plateau is about 37mm/a in Himalayan block, about 45mm/a in Lhas-Gangdese block, about 47mm/a in Qiangtang block, about 43mm/a in Songpan-Ganzi-Kekexili block, and about 35mm/a in Kunlun-Qaidam-Qilian block, since the collision-matching between the Indian continent and Eurasia continent had happened about 50Ma ago. This implies that the rate of eastward displacement is biggest in the middle of plateau, and decreases to both sides. The transition of S-N compression stress field in Tibetan Plateau, since about 28Ma+ ago, may be caused by two reasons: On one hand, the movement direction of Eurasia continent changed from northward to southward about 28Ma± ago in the northern plateau. On the other hand, the front belt that is located between India continent's and Eurasia continent's convergence-collision, had moved southward to high Himalayan from Indus-Brahmaputra suture almost at the same time in southern plateau. Affected by the stress field, the earlier tectonics rotated clockwise, NE and NW conjugate strike-slip faults developed, and the SN rift formed. This indicated that the EW movement started. The ratio between upper crust and lower crust of different blocks from south to north in the Tibetan plateau during the process of deformation are as following: about 3.5~5:1 in Himalayan block, about 1~5: 3-4 (which is about 1:3o--4 in south and about 4~5:3 in north) in Lhas-Gangdese block, about 1:3~447mm/a in these blocks: Which is located to the north of Banggong-nujiang suture.
Resumo:
As a marginal subject, dynamic responses of slopes is not only an important problem of engineering geology (Geotechnical problem), but also of other subjects such as seismology, geophysics, seismic engineering and engineering seismic and so on. Owning to the gulf between different subjects, it is arduous to study dynamic responses of slopes and the study is far from ripeness. Studying on the dynamic responses of slopes is very important in theories as well as practices. Supported by hundreds of bibliographies, this paper systemically details the development process of this subject, introduces main means to analyze this subject, and then gives brief remarks to each means respectively. Engineering geology qualitative analysis is the base of slopes dynamic responses study. Because of complexity of geological conditions, engineering geology qualitative analysis is very important in slopes stability study, especially to rock slopes with complex engineering geology conditions. Based on research fruits of forerunners, this paper summarizes factors influencing slopes dynamic stability into five aspects as geology background, stratums, rock mass structure, and topography as well as hydrogeology condition. Based on rock mass structure controlling theory, engineering geology model of the slope is grouped into two typical classes, one is model with obvious controlling discontinuities, which includes horizontal bedded slope, bedding slope, anti-dip slope, slide as well as slope with base rock and weathered crust; the other is model without obvious controlling discontinuities, which includes homogeneous soil slope, joint rock mass slope. Study on slope failure mechanism under dynamic force, the paper concludes that there are two effects will appear in slope during strong earthquake, one is earthquake inertia force, the other is ultra pore pressure buildup. The two effects lead to failure of the slope. To different types of slope failure, the intensity of two effects acting on the slope is different too. To plastic flow failure, pore pressure buildup is dominant; to falling rock failure and toppling failure, earthquake inertia force is dominant in general. This paper briefly introduces the principle of Lagrangian element method. Through a lot of numerical simulations with FLAC3D, the paper comprehensively studies dynamic responses of slopes, and finds that: if the slope is low, displacement, velocity and acceleration are linear enlarging with elevation increasing in vertical direction; if the slope is high enough, displacement, velocity and acceleration are not linear with elevation any more, on the other hand, they fluctuate with certain rhythm. At the same time, the rhythm appears in the horizontal direction in the certain area near surface of the slope. The distribution form of isoline of displacement, velocity and acceleration in the section of the slope is remarkably affected by the slope angle. In the certain area near the slope surface, isoline of displacement, velocity and acceleration is parallel to the surface of the slope, in the mean time, the strike direction of the extreraum area is parallel to the surface of the slope too. Beyond this area, the isoline direction and the strike direction of the extremum area turn to horizontal with invariable distance. But the rhythm appearing or not has nothing to with the slope angle. The paper defines the high slope effect and the low slope effect of slopes dynamic responses, discusses the threshold height H^t of the dynamic high slope effect, and finds that AW is proportional to square root of the dynamic elastic moduli El P , at the same time, it is proportional to period Tof the dynamic input. Thus, the discriminant of H^t is achieved. The discriminant can tell us that to a slope, if its height is larger than one fifth of the wavelength, its response regular will be the dynamic high slope effect; on the other hand, its response regular will be the dynamic low slope effect. Based on these, the discriminant of different slopes taking on same response under the same dynamic input is put forward in this paper. At the same time, the paper studies distribution law of the rhythm extremum point of displacement, velocity and acceleration, and finds that there exists relationship of N = int among the slope height H, the number of the rhythm extremum
VHlhro)
point N and ffthre- Furthermore, the paper points out that if N^l, the response of the slope will be dynamic high slope effect; \fN
Resumo:
It is the key project of SINOPEC at ninth five years period with a lot of work and very difficult, which the main object are the study of pool-forming mechanism, distribution rule and pool-forming model of complex secondary pool at Dongying formation in high mature exploration area, and building theories and methods of research, description and prediction of secondary fault block pool. This paper apply comprehensively with various theories, method and techniques of geology, seismic, well log, reservoir engineering, meanwhile apply with computer means, then adopt combination of quality and quantitative to develop studies of pool-forming mechanism, model and pool prediction of fault block pool. On the based of stretch, strike-slip, reversal structure theories, integrated the geometry, kinematics, and dynamics of structure, it is show that the structure framework, the structure evolve, formation mechanism of central uplift belt of Dongying depression and control to formation and distribute of secondary complex fault block pool. The opening and sealing properties, sealing mechanism and sealing models of pool-controlling fault are shown by using quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The sealing history of controlling fault, formation mechanism and distribute the regulation are established by combining together with bury history, structure evolve history, fault growth history stress field evolve history, which can be guide exploration and production oil field. It were bring up for the first time the dynamics mechanism of Dongying central uplift which were the result of compound tress field of stretch, strike-slip and reversal, companion with reversal drag structure, arcogenesis of paste and salt beds. The dual function of migration and sealing of fault were demonstrated in the research area. The ability of migration and sealing oil of pool-controlling fault is controlled by those factors of style of fault combination, activity regulation and intensity of fault at the period of oil migration. The four kinds of sealing model of pool-controlling fault were established in the research area, which the sealing mechanism of fault and distribution regulation of oil in time and space. The sealing ability of fault were controlled by quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The fuzzy judge of fault sealing is the base of prediction of secondary pool. The pool-forming model of secondary was established in the research area, which the main factors are ability migration and sealing. The transform zone of fault, inner of arc fault and the compound area of multi fault are enrichment region of secondary pool of Dongying formation, which are confirm by exploration with economic performance and social performance.