晚中生代松辽盆地形成的大地构造环境及成因机制


Autoria(s): 阎全人
Contribuinte(s)

李继亮

Data(s)

2000

Resumo

Directed by the theory of "Collision Tectonic Facies", the tectonic setting and dynamic mechanism of the formation of Songliao basin in late Mesozoic (J_3-K_1) are studied in the present thesis with the methods of petrology, petrochemistry, geochemistry and isotopic geochronology. The research contents in this paper include as followings. Firstly, the general tectonic frame is made up of different tectonic facies formed from Mid-late Proterozoic to Mesozoic, which are Huabei plate, the Chengde-Siziwangqi melange (Pz_1), the Wenduermiao magmatic arc (Pz_1), the Hegenshan-Chaogenshan melange (Pz_2), the accretion arec (Pz_1-P), the Raohe-Hulin melange (Mz), the magmatic arc (Mz) and the pull-apart basin on the magmatic arc (Mz). Secondly, the volcanic rock assemblages of Songliao basin and its adjacent area in late Mesozoic is the typical calc-alkaline of the magmatic arc. The types of volcanic rocks in the study area include basalts, basaltic andesites, andesites, dacites and rhyolites, and basic-intermediate volcanic rocks have higher alkalinity. The volcanic rock series in this area is the high-K calc-alkaline series. Thirdly, the total REE of volcanic rocks in Songliao basin and its adjacent area is higher than that of the chondrite. The pattern of the REE normalized by the chondrite shows the characteristics similar to that of the typical island arcs or the active continental margins in the earth, that is enrichment of LREE and depletion of Eu. The spider-diagram of the trace element normalized by the primitive mantle also expresses the similar features to that of the typical island arcs or the active continental margins, it has distinctive valleies of Nb, Ta, Sr, P, and Ti, as well as the peaks of La, Ce, Th, U, and K. The incompatible elements show that the high field strength elements, such as Nb, Ta, Ti, and P, are depletion while the low field strength elements, such as K, U, Pb, and Ba, are enrichment. These features are similar to those of orogenic volcanic rocks and imply the formation of the volcanic rocks in this area is related to the subduction. The degrees of both the enrichment of the HFS elements and depletion of the LFS elements become more obvious from basic to acid volcanic rocks, which suggests crustal contamination enhances with the magmatic crystallization and fractionation. The concentration of the compatible elements is W-shape, and anomalies in Cr and Ni suggest there is the contamination during the magmatic crystallization and fractionation. Fourthly, the isotopic age data prove the volcanic activity in the Songliao basin and its adjacent area started in the early-middle Jurassic, and ended in the end of the early Cretaceous-the beginning of the Cretaceous. The volcanism summit was the late Jurassic-the early Cretaceous (100 - 150Ma). Finally, the tectonic setting of volcanism in the late Mesozoic was magmatic arc, which originated the subduction of Raohe-Hulin trench to the northwest Asian plate. The subduction began in the middle Jurassic, and the collision orogenesis between the Sikhote-Alin arc and Asian continent was completed in the end of the early Cretaceous-the beginning of the late Cretaceous. The results of above tectonic processes were finally to format Nadanhada orogenic belt symbolized by the Raohe-Hulin suture or melange belt. The violently oblique movement of the Izanagi plate toward Asian plate in the late Mesozoic was the dynamic mechanism of above tectonic processes. At the same tome, the left-lateral strike-slip shear caused by the oblique movement of the Izanagi plate produced a series of strike-slip faults in east Asian margin, and the large scale displacements of these strike-slip faults then produced the pull-apart basing or grabens on the magmatic arc. Conclusively, the tectonic setting during the formation of the grabens of Songliao basin in the late Mesozoic was magmatic arc, and its dynamic mechanism was the pull-apart. In a word, there was a good coupling relation among the oblique subduction of the oceanic plate, collisional orogene between island arc and continental plate, strike-slip shear of the faults and the formation of the grabens in Songliao basin and its adjacent area in late Mesozoic. These tectonic processes were completed in the unoin dynamic setting and mechanism as above description.

Identificador

http://159.226.119.211/handle/311031/1802

http://www.irgrid.ac.cn/handle/1471x/174537

Idioma(s)

中文

Fonte

晚中生代松辽盆地形成的大地构造环境及成因机制.阎全人[d].中国科学院地质与地球物理研究所,2000.20-25

Palavras-Chave #晚中生代 #松辽盆地 #大地构造环境 #盆地成因机制
Tipo

学位论文