985 resultados para depth estimation
Resumo:
We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.
Resumo:
With the increasing need to adapt to new environments, data-driven approaches have been developed to estimate terrain traversability by learning the rover’s response on the terrain based on experience. Multiple learning inputs are often used to adequately describe the various aspects of terrain traversability. In a complex learning framework, it can be difficult to identify the relevance of each learning input to the resulting estimate. This paper addresses the suitability of each learning input by systematically analyzing the impact of each input on the estimate. Sensitivity Analysis (SA) methods provide a means to measure the contribution of each learning input to the estimate variability. Using a variance-based SA method, we characterize how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We propose an approach built on Analysis of Variance (ANOVA) decomposition to examine the prediction made in a near-to-far learning framework based on multi-task GP regression. We demonstrate the approach by analyzing the impact of driving speed and terrain geometry on the prediction of the rover’s attitude and chassis configuration in a Marsanalogue terrain using our prototype rover Mawson.
Resumo:
There is considerable scientific interest in personal exposure to ultrafine particles. Owing to their small size, these particles are able to penetrate deep into the lungs, where they may cause adverse respiratory, pulmonary and cardiovascular health effects. This article presents Bayesian hierarchical models for estimating and comparing inhaled particle surface area in the lung.
Resumo:
Height is a critical variable for helicopter hover control. In this paper we discuss, and present experimental results for, two different height sensing techniques: ultrasonic and stereo imaging, which have complementary characteristics. Feature-based stereo is used which provides a basis for visual odometry and attitude estimation in the future.
Resumo:
Height is a critical variable for helicopter hover control. In this paper we discuss, and present experimental results for, two different height sensing techniques: ultrasonic and stereo imaging, which have complementary characteristics. Feature-based stereo is used which provides a basis for visual odometry and attitude estimation in the future.
Resumo:
It is traditional to initialise Kalman filters and extended Kalman filters with estimates of the states calculated directly from the observed (raw) noisy inputs, but unfortunately their performance is extremely sensitive to state initialisation accuracy: good initial state estimates ensure fast convergence whereas poor estimates may give rise to slow convergence or even filter divergence. Divergence is generally due to excessive observation noise and leads to error magnitudes that quickly become unbounded (R.J. Fitzgerald, 1971). When a filter diverges, it must be re initialised but because the observations are extremely poor, re initialised states will have poor estimates. The paper proposes that if neurofuzzy estimators produce more accurate state estimates than those calculated from the observed noisy inputs (using the known state model), then neurofuzzy estimates can be used to initialise the states of Kalman and extended Kalman filters. Filters whose states have been initialised with neurofuzzy estimates should give improved performance by way of faster convergence when the filter is initialised, and when a filter is re started after divergence
Resumo:
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on the new information-theoretic concept of one-step Kerridge inaccuracy (OKI). Under several regulatory conditions, we establish a convergence result (and some limited strong consistency results) for our proposed online OKI-based parameter estimator. In simulation studies, we illustrate the global convergence behaviour of our proposed estimator and provide a counter-example illustrating the local convergence of other popular HMM parameter estimators.
Resumo:
Linear water wave theory suggests that wave patterns caused by a steadily moving disturbance are contained within a wedge whose half-angle depends on the depth-based Froude number $F_H$. For the problem of flow past an axisymmetric pressure distribution in a finite-depth channel, we report on the apparent angle of the wake, which is the angle of maximum peaks. For moderately deep channels, the dependence of the apparent wake angle on the Froude number is very different to the wedge angle, and varies smoothly as $F_H$ passes through the critical value $F_H=1$. For shallow water, the two angles tend to follow each other more closely, which leads to very large apparent wake angles for certain regimes.
Resumo:
Background Procedural sedation and analgesia (PSA) is used to attenuate the pain and distress that may otherwise be experienced during diagnostic and interventional medical or dental procedures. As the risk of adverse events increases with the depth of sedation induced, frequent monitoring of level of consciousness is recommended. Level of consciousness is usually monitored during PSA with clinical observation. Processed electroencephalogram-based depth of anaesthesia (DoA) monitoring devices provide an alternative method to monitor level of consciousness that can be used in addition to clinical observation. However, there is uncertainty as to whether their routine use in PSA would be justified. Rigorous evaluation of the clinical benefits of DoA monitors during PSA, including comprehensive syntheses of the available evidence, is therefore required. One potential clinical benefit of using DoA monitoring during PSA is that the technology could improve patient safety by reducing sedation-related adverse events, such as death or permanent neurological disability. We hypothesise that earlier identification of lapses into deeper than intended levels of sedation using DoA monitoring leads to more effective titration of sedative and analgesic medications, and results in a reduction in the risk of adverse events caused by the consequences of over-sedation, such as hypoxaemia. The primary objective of this review is to determine whether using DoA monitoring during PSA in the hospital setting improves patient safety by reducing the risk of hypoxaemia (defined as an arterial partial pressure of oxygen below 60 mmHg or percentage of haemoglobin that is saturated with oxygen [SpO2] less than 90 %). Other potential clinical benefits of using DoA monitoring devices during sedation will be assessed as secondary outcomes. Methods/design Electronic databases will be systematically searched for randomized controlled trials comparing the use of depth of anaesthesia monitoring devices with clinical observation of level of consciousness during PSA. Language restrictions will not be imposed. Screening, study selection and data extraction will be performed by two independent reviewers. Disagreements will be resolved by discussion. Meta-analyses will be performed if suitable. Discussion This review will synthesise the evidence on an important potential clinical benefit of DoA monitoring during PSA within hospital settings.
Resumo:
Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.
Resumo:
This thesis is concerned with two-dimensional free surface flows past semi-infinite surface-piercing bodies in a fluid of finite-depth. Throughout the study, it is assumed that the fluid in question is incompressible, and that the effects of viscosity and surface tension are negligible. The problems considered are physically important, since they can be used to model the flow of water near the bow or stern of a wide, blunt ship. Alternatively, the solutions can be interpreted as describing the flow into, or out of, a horizontal slot. In the past, all research conducted on this topic has been dedicated to the situation where the flow is irrotational. The results from such studies are extended here, by allowing the fluid to have constant vorticity throughout the flow domain. In addition, new results for irrotational flow are also presented. When studying the flow of a fluid past a surface-piercing body, it is important to stipulate in advance the nature of the free surface as it intersects the body. Three different possibilities are considered in this thesis. In the first of these possibilities, it is assumed that the free surface rises up and meets the body at a stagnation point. For this configuration, the nonlinear problem is solved numerically with the use of a boundary integral method in the physical plane. Here the semi-infinite body is assumed to be rectangular in shape, with a rounded corner. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterised by a train of waves upstream. In the limit that the height of the body above the horizontal bottom vanishes, the flow approaches that due to a submerged line sink in a $90^\circ$ corner. This limiting problem is also examined as a special case. The second configuration considered in this thesis involves the free surface attaching smoothly to the front face of the rectangular shaped body. For this configuration, nonlinear solutions are computed using a similar numerical scheme to that used in the stagnant attachment case. It is found that these solution exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Finally, the flow of a fluid emerging from beneath a semi-infinite flat plate is examined. Here the free surface is assumed to detach from the trailing edge of the plate horizontally. A linear problem is formulated under the assumption that the elevation of the plate is close to the undisturbed free surface level. This problem is solved exactly using the Wiener-Hopf technique, and subcritical solutions are found which are characterised by a train of sinusoidal waves in the far field. The nonlinear problem is also considered. Exact relations between certain parameters for supercritical flow are derived using conservation of mass and momentum arguments, and these are confirmed numerically. Nonlinear subcritical solutions are computed, and the results are compared to those predicted by the linear theory.