961 resultados para Visual feedback
Resumo:
My practice-led research explores and maps workflows for generating experimental creative work involving inertia based motion capture technology. Motion capture has often been used as a way to bridge animation and dance resulting in abstracted visuals outcomes. In early works this process was largely done by rotoscoping, reference footage and mechanical forms of motion capture. With the evolution of technology, optical and inertial forms of motion capture are now more accessible and able to accurately capture a larger range of complex movements. Made by Motion is a collaboration between digital artist Paul Van Opdenbosch and performer and choreographer Elise May; a series of studies on captured motion data used to generate experimental visual forms that reverberate in space and time. The project investigates the invisible forces generated by and influencing the movement of a dancer. Along with how the forces can be captured and applied to generating visual outcomes that surpass simple data visualisation, projecting the intent of the performer’s movements. The source or ‘seed’ comes from using an Xsens MVN – Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. In my presentation I will be displaying and discussing a selected creative works from the project along with the process and considerations behind the work.
Resumo:
Purpose: In animal models hemi-field deprivation results in localised, graded vitreous chamber elongation and presumably deprivation induced localised changes in retinal processing. The aim of this research was to determine if there are variations in ERG responses across the retina in normal chick eyes and to examine the effect of hemi-field and full-field deprivation on ERG responses across the retina and at earlier times than have previously been examined electrophysiologically. Methods: Chicks were either untreated, wore monocular full-diffusers or half-diffusers (depriving nasal retina) (n = 6-8 each group) from day 8. mfERG responses were measured using the VERIS mfERG system across the central 18.2º× 16.7º (H × V) field. The stimulus consisted of 61 unscaled hexagons with each hexagon modulated between black and white according to a pseudorandom binary m-sequence. The mfERG was measured on day 12 in untreated chicks, following 4 days of hemi-field diffuser wear, and 2, 48 and 96 h after application of full-field diffusers. Results: The ERG response of untreated chick eyes did not vary across the measured field; there was no effect of retinal location on the N1-P1 amplitude (p = 0.108) or on P1 implicit time (p > 0.05). This finding is consistent with retinal ganglion cell density of the chick varying by only a factor of two across the entire retina. Half-diffusers produced a ramped retina and a graded effect of negative lens correction (p < 0.0001); changes in retinal processing were localized. The untreated retina showed increasing complexity of the ERG waveform with development; form-deprivation prevented the increasing complexity of the response at the 2, 48 and 96 h measurement times and produced alterations in response timing. Conclusions: Form-deprivation and its concomitant loss of image contrast and high spatial frequency images prevented development of the ERG responses, consistent with a disruption of development of retinal feedback systems. The characterisation of ERG responses in normal and deprived chick eyes across the retina allows the assessment of concurrent visual and retinal manipulations in this model. (Ophthalmic & Physiological Optics © 2013 The College of Optometrists.)
Resumo:
Purpose To design and manufacture lenses to correct peripheral refraction along the horizontal meridian and to determine whether these resulted in noticeable improvements in visual performance. Method Subjective refraction of a low myope was determined on the basis of best peripheral detection acuity along the horizontal visual field out to ±30° for both horizontal and vertical gratings. Subjective refraction was compared to objective refractions using a COAS-HD aberrometer. Special lenses were made to correct peripheral refraction, based on designs optimized with and without smoothing across a 3 mm diameter square aperture. Grating detection was retested with these lenses. Contrast thresholds of 1.25’ spots were determined across the field for the conditions of best correction, on-axis correction, and the special lenses. Results The participant had high relative peripheral hyperopia, particularly in the temporal visual field (maximum 2.9 D). There were differences > 0.5D between subjective and objective refractions at a few field angles. On-axis correction reduced peripheral detection acuity and increased peripheral contrast threshold in the peripheral visual field, relative to the best correction, by up to 0.4 and 0.5 log units, respectively. The special lenses restored most of the peripheral vision, although not all at angles to ±10°, and with the lens optimized with aperture-smoothing possibly giving better vision than the lens optimized without aperture-smoothing at some angles. Conclusion It is possible to design and manufacture lenses to give near optimum peripheral visual performance to at least ±30° along one visual field meridian. The benefit of such lenses is likely to be manifest only if a subject has a considerable relative peripheral refraction, for example of the order of 2 D.
Resumo:
This paper discusses findings made during a study of energy use feedback in the home (eco-feedback), well after the novelty has worn off. Contributing towards four important knowledge gaps in the research, we explore eco-feedback over longer time scales, focusing on instances where the feedback was not of lasting benefit to users rather than when it was. Drawing from 23 semi-structured interviews with Australian householders, we found that an initially high level of engagement gave way over time to disinterest, neglect and in certain cases, technical malfunction. Additionally, preconceptions concerned with the “purpose” of the feedback were found to affect use. We propose expanding the scope of enquiry for eco-feedback in several ways, and describe how eco-feedback that better supports decision-making in the “maintenance phase”, i.e. once the initial novelty has worn off, may be key to longer term engagement.
Resumo:
There is a growing trend to offer students learning opportunities that are flexible, innovative and engaging. As educators embrace student-centred agile teaching and learning methodologies, which require continuous reflection and adaptation, the need to evaluate students’ learning in a timely manner has become more pressing. Conventional evaluation surveys currently dominate the evaluation landscape internationally, despite recognition that they are insufficient to effectively evaluate curriculum and teaching quality. Surveys often: (1) fail to address the issues for which educators need feedback, (2) constrain student voice, (3) have low response rates and (4) occur too late to benefit current students. Consequently, this paper explores principles of effective feedback to propose a framework for learner-focused evaluation. We apply a three-stage control model, involving feedforward, concurrent and feedback evaluation, to investigate the intersection of assessment and evaluation in agile learning environments. We conclude that learner-focused evaluation cycles can be used to guide action so that evaluation is not undertaken simply for the benefit of future offerings, but rather to benefit current students by allowing ‘real-time’ learning activities to be adapted in the moment. As a result, students become co-producers of learning and evaluation becomes a meaningful, responsive dialogue between students and their instructors.
Resumo:
In this paper, we present SMART (Sequence Matching Across Route Traversals): a vision- based place recognition system that uses whole image matching techniques and odometry information to improve the precision-recall performance, latency and general applicability of the SeqSLAM algorithm. We evaluate the system’s performance on challenging day and night journeys over several kilometres at widely varying vehicle velocities from 0 to 60 km/h, compare performance to the current state-of- the-art SeqSLAM algorithm, and provide parameter studies that evaluate the effectiveness of each system component. Using 30-metre sequences, SMART achieves place recognition performance of 81% recall at 100% precision, outperforming SeqSLAM, and is robust to significant degradations in odometry.
Resumo:
The ability to automate forced landings in an emergency such as engine failure is an essential ability to improve the safety of Unmanned Aerial Vehicles operating in General Aviation airspace. By using active vision to detect safe landing zones below the aircraft, the reliability and safety of such systems is vastly improved by gathering up-to-the-minute information about the ground environment. This paper presents the Site Detection System, a methodology utilising a downward facing camera to analyse the ground environment in both 2D and 3D, detect safe landing sites and characterise them according to size, shape, slope and nearby obstacles. A methodology is presented showing the fusion of landing site detection from 2D imagery with a coarse Digital Elevation Map and dense 3D reconstructions using INS-aided Structure-from-Motion to improve accuracy. Results are presented from an experimental flight showing the precision/recall of landing sites in comparison to a hand-classified ground truth, and improved performance with the integration of 3D analysis from visual Structure-from-Motion.
Resumo:
This paper presents a long-term experiment where a mobile robot uses adaptive spherical views to localize itself and navigate inside a non-stationary office environment. The office contains seven members of staff and experiences a continuous change in its appearance over time due to their daily activities. The experiment runs as an episodic navigation task in the office over a period of eight weeks. The spherical views are stored in the nodes of a pose graph and they are updated in response to the changes in the environment. The updating mechanism is inspired by the concepts of long- and short-term memories. The experimental evaluation is done using three performance metrics which evaluate the quality of both the adaptive spherical views and the navigation over time.
Resumo:
Purpose: Changes in pupil size and shape are relevant for peripheral imagery by affecting aberrations and how much light enters and/or exits the eye. The purpose of this study is to model the pattern of pupil shape across the complete horizontal visual field and to show how the pattern is influenced by refractive error. Methods: Right eyes of thirty participants were dilated with 1% cyclopentolate and images were captured using a modified COAS-HD aberrometer alignment camera along the horizontal visual field to ±90°. A two lens relay system enabled fixation at targets mounted on the wall 3m from the eye. Participants placed their heads on a rotatable chin rest and eye rotations were kept to less than 30°. Best-fit elliptical dimensions of pupils were determined. Ratios of minimum to maximum axis diameters were plotted against visual field angle. Results: Participants’ data were well fitted by cosine functions, with maxima at (–)1° to (–)9° in the temporal visual field and widths 9% to 15% greater than predicted by the cosine of the field angle . Mean functions were 0.99cos[( + 5.3)/1.121], R2 0.99 for the whole group and 0.99cos[( + 6.2)/1.126], R2 0.99 for the 13 emmetropes. The function peak became less temporal, and the width became smaller, with increase in myopia. Conclusion: Off-axis pupil shape changes are well described by a cosine function which is both decentered by a few degrees and flatter by about 12% than the cosine of the viewing angle, with minor influences of refraction.
Resumo:
In a people-to-people matching systems, filtering is widely applied to find the most suitable matches. The results returned are either too many or only a few when the search is generic or specific respectively. The use of a sophisticated recommendation approach becomes necessary. Traditionally, the object of recommendation is the item which is inanimate. In online dating systems, reciprocal recommendation is required to suggest a partner only when the user and the recommended candidate both are satisfied. In this paper, an innovative reciprocal collaborative method is developed based on the idea of similarity and common neighbors, utilizing the information of relevance feedback and feature importance. Extensive experiments are carried out using data gathered from a real online dating service. Compared to benchmarking methods, our results show the proposed method can achieve noticeable better performance.
Resumo:
This paper introduces an improved line tracker using IMU and vision data for visual servoing tasks. We utilize an Image Jacobian which describes motion of a line feature to corresponding camera movements. These camera motions are estimated using an IMU. We demonstrate impacts of the proposed method in challenging environments: maximum angular rate ~160 0/s, acceleration ~6m /s2 and in cluttered outdoor scenes. Simulation and quantitative tracking performance comparison with the Visual Servoing Platform (ViSP) are also presented.
Resumo:
In this paper we present a novel place recognition algorithm inspired by recent discoveries in human visual neuroscience. The algorithm combines intolerant but fast low resolution whole image matching with highly tolerant, sub-image patch matching processes. The approach does not require prior training and works on single images (although we use a cohort normalization score to exploit temporal frame information), alleviating the need for either a velocity signal or image sequence, differentiating it from current state of the art methods. We demonstrate the algorithm on the challenging Alderley sunny day – rainy night dataset, which has only been previously solved by integrating over 320 frame long image sequences. The system is able to achieve 21.24% recall at 100% precision, matching drastically different day and night-time images of places while successfully rejecting match hypotheses between highly aliased images of different places. The results provide a new benchmark for single image, condition-invariant place recognition.
Resumo:
This paper examines the Assessment and Feedback aspects of Studio Teaching as Creative Arts pedagogy. Prompted by USQ’s newly offered Bachelor of Creative Arts (BCA), the author has developed an Assessment Matrix specifically designed to satisfy a number of imperatives, including: • ‘objectifying’ the subjective aspects of creative practice as assessable coursework/research • providing the means by which accurate, detailed, personalised and confidential feedback may be provided to students individually • providing consistent, accurate, meaningful assessment records for student, lecturer, and institution • ensuring consistency, continuity, and transparency of assessment processes and records to satisfy quality audits • minimising marking and assessment time, whilst maximising assessment integrity and depth • requiring only basic level skills and knowledge of a computer application already in common use (Microsoft Excel) • adaptability to a range of creative courses ‐ across disciplines This Assessment Matrix has been in development (and trialled) since January 2009.
Resumo:
In many active noise control (ANC) applications, an online secondary path modelling method that uses a white noise as a training signal is required. This paper proposes a new feedback ANC system. Here we modified both the FxLMS and the VSS-LMS algorithms to raised noise attenuation and modelling accuracy for the overall system. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Preventing continuous injection of the white noise increases the performance of the proposed method significantly and makes it more desirable for practical ANC systems. Computer simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
The progress of technology has led to the increased adoption of energy monitors among household energy consumers. While the monitors available on the market deliver real-time energy usage feedback to the consumer, the form of this data is usually unengaging and mundane. Moreover, it fails to address consumers with different motivations and needs to save and compare energy. This master‟s thesis project presents a study that seeks to inform design guidelines for differently motivated energy consumers. The focus of the research is on comparative feedback supported by a community of energy consumers. In particular, the discussed comparative feedback types are explanatory comparison, temporal self-comparison, norm comparison, one-on-one comparison and ranking, whereby the last three support exploring the potential of socialising energy-related feedback in social networking sites, such as Facebook. These feedback types were integrated in EnergyWiz – a mobile application that enables users to compare with their past performance, neighbours, contacts from social networking sites and other EnergyWiz users. The application was developed through a theory-driven approach and evaluated in personal, semi-structured interviews which provided insights on how motivation-related comparative feedback should be designed. It was also employed in expert focus group discussions which resulted in defining opportunities and challenges before mobile, social energy monitors. The findings have unequivocally shown that users with different motivations to compare and to conserve energy have different preferences for comparative feedback types and design. It was established that one of the most influential factors determining design factors is the people users compare to. In addition, the research found that even simple communication strategies in Facebook, such as wall posts and groups can contribute to engagement with energy conservation practices. The concept of mobility of the application was evaluated as positive since it provides place and time-independent access to the energy consumption data.