951 resultados para ULTRAVIOLET-IRRADIATION
Resumo:
Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.
Resumo:
Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.
Resumo:
Irradiation efect in three carbon allotropes C60, diamond and highly oriented pyrolytic graphite (HOPG) induced by 170 keV B ions, mainly including the process of the damage creation, is investigated by means of Raman spectroscopy technique. The diferences on irradiation sensitivity and structural stability for C60, HOPG and diamond are compared. The analysis results indicate that C60 is the most sensitive for B ions irradiation,diamond is the second one and the structure of HOPG is the most stable under B ion irradiation. The damage cross sections ? of C60, diamond and HOPG deduced from the Raman spectra are 7.78×10−15 , 6.38×10−15 and1.31 × 10−15cm2, respectively.
Resumo:
To determine whether adenovirus-mediated wild-type p53 transfer after radiotherapy could radiosensitize non-small-cell lung cancer (NSCLC) cells to subclinical-dose carbon-ion beam (C-beam), H1299 cells were exposed to a C-beam or -ray and then infected with 5 MOI of AdCMV-p53 or GFP (C-beam or -ray with p53 or GFP).Cell cycle was detected by flow cytometric analysis. The apoptosis was examined by a fluorescent microscope with DAPI staining. DNA fragmentation was monitored by the TUNEL assay. P53 mRNA was detected by reverse-transcriptase polymerase chain reaction. The expression of p53, MDM2, and p21 was monitored by Western blot. Survival fractions were determined by colony-forming assay. The percentages of G1-phase cells in C-beam with p53 increased by 8.2%–16.0%, 5.2%–7.0%, and 5.8%–18.9%, respectively, compared with C-beam only, -ray with p53, or p53 only. The accumulation of G2-phase cells in C-beam with p53 increased by 5.7%–8.9% and 8.8%–14.8%, compared with those in -ray with p53 or p53 only, respectively. The percentage of apoptosis for C-beam with p53 increased by 7.4%–19.1%, 5.8%–11.7%, and 5.2%–19.2%, respectively, compared with C-beam only, -ray with p53, or p53 only. The level of p53 mRNA in C-beam with p53 was significantly higher than that in p53 only. The expression level of p53 and p21 in C-beam with p53 was significantly higher than that in both C-beam with GFP and p53 only. The survival fractions for C-beam with p53 were significantly less than those for the other groups (p 0.05). The data suggested that AdCMV-p53 transfer could more efficiently radiosensitize H1299 cells to subclinical-dose C-beam irradiation through the restoration of p53 function.
Resumo:
A high energy heavy ion microbeam irradiation system is constructed at the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS). A quadrupole focusing system, in combination with a series of slits, has been designed here. The IMP microbeam system is described in detail. The intrinsic and parasitic aberrations associated with the magnets are simulated. The ion beam optics of this microbeam system is investigated systematically. Then the optimized initial beam parameters are given for high spatial resolution and high hitting rates.
Resumo:
Abstract A state-of-the-art high energy heavy ion microbeam irradiation system is constructed at the Institute of Modern Physics of the Chinese Academy of Sciences. This microbeam system operates in both full current intensity mode and single ion mode. It delivers a predefined number of ions to preselected targets for research in biology and material science. The characteristic of this microbeam system is high energy and vertical irradiation. A quadrupole focusing system, in combination with a series of slits, has been designed to optimize the spatial resolution. A symmetrically achromatic system leads the beam downwards and serves simultaneously as an energy analyzer. A high gradient quadrupole triplet finally focuses a C6+ ion beam to 1 µm in the vacuum chamber within the energy range from 10 MeV/u to 100 MeV/u. In this paper, the IMP microbeam system is described in detail. A systematic investigation of the ion beam optics of this microbeam system is presented together with the associated aberrations. Comparison is made between the IMP microbeam system and the other existing systems to further discuss the performance of this microbeam. Then the optimized initial beam parameters are given for high resolution and high hitting efficiency. At last, the experiment platform is briefly introduced.