571 resultados para Symbiotic Cnidarians


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to investigate which genes Cnidaria use for photoreception and test whether Gi alpha subunit protein is involved in the phototransduction cascade, giving additional tools to investigate light-mediated behaviors, as nematocyte firing. Here, I engineered an opsin gene promoter construct useful to test whether nematocyte sensory cells express opsin gene. By determining the expression of one of the unique EST opsin genes of the eyeless hydrozoan Hydra magnipapillata genome in nematocyte sensory cells, we will be able to investigate whether light modulation is an ancestral feature in Cnidaria, and whether regulation of nematocyte discharge by opsin-mediated phototransduction predated this pathway’s function in cnidarian eyes. Nematocytes, the cnidarians stinging cells, discharge nematocysts to capture prey. As nematocysts are energetically expensive, the discharge is tightly regulated and occurs after proper chemical and mechanical stimulation. Cnidarians are also known to display a rich corpus of photobehaviors, which are often associated with activities that involve nematocytes. Previous experiments on nematocyst firing modulation show that light decreases nematocyte firing. This study contributed to confirm that bright light decreases the tendency for nematocytes to discharge in Haliplanella luciae. Similar findings in cubozoan and hydrozoan lead us to believe that light modulation of cnidocytes may be an ancestral feature of Cnidaria. Experimentally, I found no evidence that pertussis toxin, a Gi alpha subunit protein inhibitor, ablates Hydra magnipapillata photobehaviour, preliminary suggesting that Gi alpha subunit protein is not involved in photoresponse. I found no significant association between pertussis toxin and nematocyte firing in Haliplanella luciae both in conditions of dim and bright light, suggesting that Gi alpha subunit protein is not involved in photoresponse. We have preliminary evidence for a prevalence of photoreception over chemoreception, tending toward conditions of bright light. This finding may suggest the involvement of a Gs alpha subunit protein in Haliplanella luciae phototransduction pathway. While nematocyte chemo- and mechano-sensitivity have been extensively studied, further research is necessary to better understand what an ancestral phototransduction cascade looked like, and how opsin-based phototransduction acts to regulate nematocyte discharge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Symbiotische Mikroorganismen aus dem Termitendarm Es ist eine bekannte Tatsache, dass die Hauptaufgabe der Darmflora der niederen Termite im Abbau von Holz liegt. Im Laufe der Millionen Jahre alten Entwicklung der Termiten hat sich in ihrem Darm ein Ökosystem aufgebaut, das aus Protozoen, Archaeen, Bakterien und Hefen besteht. Ziel der vorliegenden Arbeit war die teilweise Erforschung der symbiotischen Zusammenhänge in diesem ökologischen System. Es wurden dabei zwei Gebiete genauer untersucht: Cellulolytische Bakterien im Darm von niederen Termiten Die bisher vorherrschende Meinung sah in den Protozoen die Hauptkomponenten des Celluloseabbaus in Termiten. In dieser Arbeit gelang es 164 cellulolytische Bakterienstämme aus sieben niederen Termitenarten zu isolieren und zu identifizieren. Diese Vielzahl cellulolytischer Bakterienarten könnte ein Indiz dafür sein, dass Bakterien beim Holzabbau von Termiten eine effizientere Rolle spielen als angenommen. Oberflächenbakterien von Mixotricha paradoxa, einem Flagellaten aus dem Darm der niederen Termite Mastotermes darwiniensisMixotricha paradoxa ist ein Beispiel der seltenen Form einer Bewegungssymbiose zwischen Protozoen und Bakterien. Der Flagellat wird von Spirochäten, die auf seiner Oberfläche befestigt sind, vorangetrieben. Zusätzlich leben noch stäbchenförmige Bakterien auf der Hülle. Drei Spirochätenarten und das stäbchenförmige Bakterium konnten identifiziert und lokalisiert werden. Es wird angenommen, dass alle drei Spirochätenarten Mitglieder der Bewegungssymbiose sind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Termiten beherbergen in ihrem Darm eine einzigartige Flora aus Bakterien, Archaeen, Flagellaten und Hefen. Diese symbiontische mikrobielle Gemeinschaft ist am Abbau von komplexen organischen Verbindungen beteiligt und ermöglicht es den Termiten schwer abbaubares Material wie Holz als Nahrungsquelle zu nutzen. Spirochaeten, eine Gruppe beweglicher Bakterien die sich durch ihre besondere Morphologie und Art der Fortbewegung von allen anderen Mikroorganismen abgrenzen lassen, gehören zu den häufigsten Bakterien im Termitendarm. Ziel der Arbeit war die Isolierung und Charakterisierung bislang unbekannter Spirochaeten aus Termitendärmen. Aus drei niederen Termitenarten konnten sechs spirochaetale Stämme gewonnen und identifiziert werden. Die Isolate ließen sich anhand der 16S rRNA Gensequenzen den Gattungen Treponema und Spirochaeta zuordnen. Im Gegensatz zu allen bislang charakterisierten Spirochaeten zeigte der Stamm SPN1 aus der Termite Neotermes castaneus eine kokkoide Zellform und war unbeweglich. Der Organismus wurde daher als neue Art, Spirochaeta coccoides sp. nov., beschrieben. Bei allen gewonnenen Isolaten handelt es sich um strikt anaerobe Organismen die verschiedene Mono-, Di- und Oligosaccharide fermentieren. Als wesentliche Stoffwechselprodukte konnten Acetat und Ethanol (sowie Formiat bei einem Stamm) identifiziert werden. Weiterhin konnten bei den untersuchten Stämmen eine Reihe von enzymatischen Aktivitäten nachgewiesen werden, die für den Abbau von Lignocellulose im Termitendarm von Bedeutung sind. Die Untersuchungen deuten darauf hin, dass die Spirochaeten eine wichtige Rolle bei der Fermentation von Abbauprodukten der Lignocellulose im Termitendarm spielen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(De)colonization Through Topophilia: Marjorie Kinnan Rawlings’s Life and Work in Florida attempts to reveal the author’s intimate connection to and mental growth through her place, namely the Cross Creek environs, and its subsequent effect on her writing. In 1928, Marjorie Kinnan Rawlings and her first husband Charles Rawlings came to Cross Creek, Florida. They bought the shabby farmhouse on Cross Creek Road, trying to be both, writers and farmers. However, while Charles Rawlings was unable to write in the backwoods of the Florida Interior, Rawlings found her literary voice and entered a symbiotic, reciprocal relationship with the natural world of the Cracker frontier. Her biographical preconditions – a childhood spent in the rural area of Rock Creek, outside of Washington D. C. - and a father who had instilled in her a sense of place or topophilia, enabled her to overcome severe marriage tensions and the hostile climate women writers faced during the Depression era. Nature as a helping ally and as an “undomesticated”(1) space/place is a recurrent motif throughout most of Rawlings’s Florida literature. At a time when writing the American landscape/documentary and the extraction of the self from texts was the prevalent literary genre, Marjorie Kinnan Rawlings inscribed herself into her texts. However, she knew that the American public was not yet ready for a ‘feminist revolt’, but was receptive of the longtime ‘inaudible’ voices from America’s regions, especially with regard to urban poverty and a homeward yearning during the Depression years. Fusing with the dynamic eco-consciousness of her Cracker friends and neighbors, Rawlings wrote in the literary category of regionalism enabling her to pursue three of her major aims: an individuated self, a self that assimilated with the ‘master narratives’ of her time and the recognition of the Florida Cracker and Scrub region. The first part of this dissertation briefly introduces the largely unknown and underestimated writer Marjorie Kinnan Rawlings, providing background information on her younger years, the relationship toward her family and other influential persons in her life. Furthermore, it takes a closer look at the literary category of regionalism and Rawlings’s use of ‘place’ in her writings. The second part is concerned with the ‘region’ itself, the state of Florida. It focuses on the natural peculiarities of the state’s Interior, the scrub and hammock land around her Cracker hamlet as well as the unique culture of the Florida Cracker. Part IV is concerned with the analysis of her four Florida books. The author is still widely related to the ever-popular novel The Yearling (1938). South Moon Under (1933) and Golden Apples (1935), her first two novels, have not been frequently republished and have subsequently fallen into oblivion. Cross Creek (1942), Rawlings’s last Florida book, however, has recently gained renewed popularity through its use in classes on nature writers and the non-fiction essay but it requires and is here re-evaluated as the author’s (relational) autobiography. The analysis through place is brought to completion in this work and seems to intentionally close the circle of Rawlings’s Florida writings. It exemplifies once more that detachment from place is impossible for Rawlings and that the intermingling of life and place in literature, is essential for the (re)creation of her identity. Cross Creek is therefore not only one of Rawlings’s greatest achievements; it is more importantly the key to understanding the author’s self and her fiction. Through the ‘natural’ interrelationship of place and self and by looking “mutually outward and inward,”(2) Marjorie Kinnan Rawlings finds her literary voice, a home and ‘a room of her own’ in which to write and come to consciousness. Her Florida literature is not only product but also medium and process in her assessment of her identity and self. _____________ (1) Alaimo, Stacy. Undomesticated Ground: Recasting Nature as Feminist Space (Ithaca: Cornell UP, 2000) 23. (2) Libby, Brooke. “Nature Writing as Refuge: Autobiography in the Natural World” Reading Under the Sign of Nature. New Essays in Ecocriticism. Ed. John Tallmadge and Henry Harrington. (Salt Lake City: The U of Utah P, 2000) 200.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen der vorliegenden Dissertation wurde die phylogenetischen Stellungen der Xenoturbellida (Deuterostomia) und der Syndermata (Protostomia) mit phylogenomischen Techniken untersucht. Auf methodischer Ebene konnte gezeigt werden, dass ribosomale Proteine aufgrund ihres mittleren bis hohen Konservierungsgrades, ihrer Häufigkeit in kleineren EST-Projekten, damit verbunden ihrer Häufigkeit in Datenbanken und ihres phylogenetischen Informationsgehalts nützliche Werkzeuge für phylogenetische Fragestellungen sind. Es konnte durch phylogenetische Rekonstruktionen und Hypothesentests auf Basis eines 11.912 Aminosäuren langen Datensatzes gezeigt werden, dass die Xenoturbellida innerhalb der Deuterostomia eine Schwestergruppenbeziehung zu den Ambulacraria eingehen. Diese Arbeit zeigt im Vergleich aller bisher durchgeführten Arbeiten die beste statistische Unterstützung für diese Topologie. Weiterhin konnte untermauert werden, dass die Urochordata vermutlich anstelle der Cephalochordata die Schwestergruppe der Vertebrata sind. Der Vergleich der publizierten Xenoturbella EST-Datensätze mit dem eigenen Datensatz ließ den Rückschluß zu, dass ESTs offenbar klar weniger anfällig gegen Kontaminationen mit Erbmaterial (DNA+RNA) anderer Spezies sind als PCR-Amplifikate genomischer oder mitochondrialer Gene. Allerdings bestimmt anscheinend der physiologische Zustand der Tiere die Repräsentation von Transkriptklassen wie Stressproteine und mitochondriale Transkripte. Die bakteriellen Transkripte in einem der EST-Datensätze stammen vermutlich von Chlamydien, die möglicherweise symbiontisch in Xenoturbella bocki leben. Im Bereich der Protostomia wurden drei EST-Projekte für Vertreter der Syndermata durchgeführt. Basierend auf drei verschiedenen Proteinalignment-Datensätzen von ca. 11.000 Aminosäuren Länge konnte gezeigt werden, dass die Syndermata innerhalb der Spiralia einzugruppieren sind und dass sie mit den Gnathostomulida das monophyletische Supertaxon Gnathifera bilden. Die genaue phylogenetische Position der Syndermata innerhalb der Spiralia konnte hingegen noch nicht eindeutig geklärt werden, ebenso wie kein kongruenter Beweis für die Existenz des Supertaxons Platyzoa gefunden werden konnte. Im Rahmen der Untersuchung der internen Phylogenie der Syndermata konnten drei der fünf konkurrierenden Hypothesen aufgrund der Paraphylie der Eurotatoria ausgeschlossen werden. Da keine Daten der Seisonidea in den Analysen implementiert waren, bleibt die Frage der internen Phylogenie der Syndermata letztlich offen. Klar ist jedoch, dass die Eurotatoria nicht wie bislang angenommen monophyletisch sind, da die räderorgantragenden Bdelloidea keinesfalls den morphologisch diesbezüglich ähnlichen Monogononta ähnlich sind, sondern den räderorganlosen Acanthocephala näher stehen. Die Abbildung der molekularen Phylogenie auf die morphologischen Verhältnisse zeigt, dass das Räderorgan (partiell oder komplett) offenbar kurz nach der Aufspaltung der Syndermata in Monogononta und Acanthocephala + Bdelloidea in der Acanthocephala + Bdelloidea-Linie reduziert wurde. Die Entstehung des einziehbaren hinteren Körperteils (Rostrum bei Bdelloidea bzw. Proboscis bei Acanthocephala) in der Acanthocephala + Bdelloidea-Linie könnte das Schlüsselereignis zur Entstehung des Endoparasitismus der Acanthocephala gewesen sein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study of sponge-bacterial association, the presence of a marine bacterium which has not seen to be associated previously with the Mediterranean sponge Suberites domuncula was investigated. The marine sponge S. domuncula was chosen as the subject of investigation, for the identification of potential symbiotic microorganisms, since it can be kept under controlled laboratory conditions for over five years. By the use of specialized media assisting in the growth of a metal oxidizing bacterium, the manganese oxidizing bacterium was isolated from the surface of the marine sponge. The bacterium so isolated was characterized for its growth characteristics by microbiological and biochemical techniques, a detailed analysis of which showed that the bacterium followed a life cycle where the culture showed the presence of spore forming bacteria. This was correlated to the manganese oxidation activity of the bacteria and it was found that both stages are interdependent.The action of the protein responsible for carrying out the manganese (Mn) oxidation was studied by an in-gel oxidation assay, and the presence of a multi copper oxidase was confirmed by the use of copper chelators in the buffer. In parallel the effect of addition of copper was observed on the manganese oxidation by the bacteria thus supporting the observations. The manganese oxidation reaction by the bacteria was determined in the culture medium and on the surface of the cells, and it could be concluded that the oxidation was facilitated by the presence of the polysaccharides and proteins on the surface of the cells.Thus the presence of a bacterium capable of oxidizing the manganese from the surroundings was confirmed to be symbiotically associated with the marine sponge S. domuncula by monitoring its growth in axenic cultures. The reasons behind this association were studied.This bacterium displays a crucial role in the physiology/metabolism of the sponge by acting as a reversible Mn store in S. domuncula. According to this view, the presence of SubDo-03 bacteria is required as a protection against higher, toxic concentrations of Mn in the environment; manganese (II) after undergoing oxidation to manganese (IV), becomes an insoluble ion. Since only minute levels of manganese exist in the surrounding seawater a substantial accumulation of manganese has to arise, or a release by the bacterial-precipitated manganese (IV) is implicated to maintain the reversible balance. The other possible benefits provided by the bacterial association to the sponge could be in preventing cellular oxygen toxicity, help in nutrient scavenging and detoxification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mediterranean Sea is expected to react faster to global change compared to the ocean and is already showing more pronounced warming and acidification rates. A study performed along the Italian western coast showed that porosity of the skeleton increases with temperature in the zooxanthellate (i.e. symbiotic with unicellular algae named zooxanthellae) solitary scleractinian Balanophyllia europaea while it does not vary with temperature in the solitary non-zooxanthellate Leptopsammia pruvoti. These results were confirmed by another study that indicated that the increase in porosity was accompanied by an increase of the fraction of the largest pores in the pore-space, perhaps due to an inhibition of the photosynthetic process at elevated temperatures, causing an attenuation of calcification. B. europaea, L. pruvoti and the colonial non-zooxanthellate Astroides calycularis, transplanted along a natural pH gradient, showed that high temperature exacerbated the negative effect of lowered pH on their mortality rates. The growth of the zooxanthellate species did not react to reduced pH, while the growth of the two non-zooxanthellate species was negatively affected. Reduced abundance of naturally occurring B. europaea, a mollusk, a calcifying and a non-calcifying macroalgae were observed along the gradient while no variation was seen in the abundance of a calcifying green alga. With decreasing pH, the mineralogy of the coral and mollusk did not change, while the two calcifying algae decreased the content of aragonite in favor of the less soluble calcium sulphates and whewellite (calcium oxalate), possibly as a mechanism of phenotypic plasticity. Increased values of porosity and macroporosity with CO2 were observed in B. europaea specimens, indicating reduces the resistance of its skeletons to mechanical stresses with increasing acidity. These findings, added to the negative effect of temperature on various biological parameters, generate concern on the sensitivity of this zooxanthellate species to the envisaged global climate change scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite extensive studies focus mainly on sexual reproductive characteristics in tropical scleractinian species, there is limited knowledge on temperate regions. The Mediterranean is a biodiversity hotspot under intense pressure from anthropogenic impacts. Climatic models further predict that the Mediterranean basin will be one of the most impacted regions by the ongoing warming trend. This makes it a potential model of more global patterns to occur in the world’s marine biota, and a natural focus of interest for research on climate. The present research contributed to increase data on reproductive modes and sexuality of temperate scleractinian corals, highlighting their developmental plasticity, showing different forms of propagation and different responses to environmental change. For the first time, sexuality and reproductive mode in Caryophyllia inornata were determined. An unusual embryogenesis without a clear seasonal pattern was observed, suggesting the possibility of an asexual origin. Sexual reproduction of Astroides calycularis was governed by annual changes in seawater temperature, as observed for other Mediterranean dendrophylliids. Defining the reproductive biology of these species is the starting point for studying their potential response to variations of environmental parameters, on a global climate change context. The results on the influence of temperature on reproductive output of the zooxanthellate (symbiosis with unicellular algae) Balanophyllia europaea and the non-zooxanthellate Leptopsammia pruvoti suggest that the latter may be quite tolerant to temperature increase, since the zooxanthellate species resulted less efficient at warm temperatures. A possible explanation could be related to their different trophic system. In B. europaea thermal tolerance is primarily governed by the symbiotic algae, making it more sensitive to temperature changes. On the contrary, the absence of symbionts in L. pruvoti might make it more resistant to temperature. In a progressively warming Mediterranean, the efficiency on scleractinian reproduction could be influenced in different ways, reflecting their extraordinary adaptability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans harbour nearly 100 trillion intestinal bacteria that are essential for health. Millions of years of co-evolution have moulded this human-microorganism interaction into a symbiotic relationship in which gut bacteria make essential contributions to human nutrient metabolism and in return occupy a nutrient-rich environment. Although intestinal microorganisms carry out essential functions for their hosts, they pose a constant threat of invasion owing to their sheer numbers and the large intestinal surface area. In this Review, we discuss the unique adaptations of the intestinal immune system that maintain homeostatic interactions with a diverse resident microbiota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a female-only festival in a significantly gender-segregated society, sāmā cakevā provides a window into Maithil women’s understandings of their society and the sacred, cultural subjectivities, moral frameworks, and projects of self-construction. The festival reminds us that to read male-female relations under patriarchal social formations as a dichotomy between the empowered and the disempowered ignores the porous boundaries between the two in which negotiations and tradeoffs create a symbiotic reliance. Specifically, the festival names two oppositional camps—the male world of law and the female world of relationships—and then creates a male character, the brother, who moves between the two, loyal to each, betraying, in a sense, each, but demonstrating, by his movements, the currents and avenues of power. This article makes available to other scholars of South Asian culture and society an extended description and analysis of this distinctive festival, while also contributing to the scholarly discussion of women’s expressive traditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant volatiles typically occur as a complex mixture of low-molecular weight lipophilic compounds derived from different biosynthetic pathways, and are seemingly produced as part of a defense strategy against biotic and abiotic stress, as well as contributing to various physiological functions of the producer organism. The biochemistry and molecular biology of plant volatiles is complex, and involves the interplay of several biochemical pathways and hundreds of genes. All plants are able to store and emit volatile organic compounds (VOCs), but the process shows remarkable genotypic variation and phenotypic plasticity. From a physiological standpoint, plant volatiles are involved in three critical processes, namely plant–plant interaction, the signaling between symbiotic organisms, and the attraction of pollinating insects. Their role in these ‘‘housekeeping’’ activities underlies agricultural applications that range from the search for sustainable methods for pest control to the production of flavors and fragrances. On the other hand, there is also growing evidence that VOCs are endowed with a range of biological activities in mammals, and that they represent a substantially under-exploited and still largely untapped source of novel drugs and drug leads. This review summarizes recent major developments in the study of biosynthesis, ecological functions and medicinal applications of plant VOCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To allow classification of bacteria previously reported as the SP group and the Stewart-Letscher group, 35 isolates from rodents (21), rabbits (eight), a dog and humans (five) were phenotypically and genotypically characterized. Comparison of partial rpoB sequences showed that 34 of the isolates were closely related, demonstrating at least 97.4 % similarity. 16S rRNA gene sequence comparison of 20 selected isolates confirmed the monophyly of the SP group and revealed 98.5 %-100 % similarity between isolates. A blast search using the 16S rRNA gene sequences showed that the highest similarity outside the SP group was 95.5 % to an unclassified rat isolate. The single strain, P625, representing the Stewart-Letscher group showed the highest 16S rRNA gene similarity (94.9-95.5 %) to members of the SP group. recN gene sequence analysis of 11 representative strains resulted in similarities of 97-100 % among the SP group strains, which showed 80 % sequence similarity to the Stewart-Letscher group strain. Sequence similarity values based on the recN gene, indicative for whole genome similarity, showed the SP group being clearly separated from established genera, whereas the Stewart-Letscher group strain was associated with the SP group. A new genus, Necropsobacter gen. nov., with only one species, Necropsobacter rosorum sp. nov., is proposed to include all members of the SP group. The new genus can be separated from existing genera of the family Pasteurellaceae by at least three phenotypic characters. The most characteristic properties of the new genus are that haemolysis is not observed on bovine blood agar, positive reactions are observed in the porphyrin test, acid is produced from (+)-L-arabinose, (+)-D-xylose, dulcitol, (+)-D-galactose, (+)-D-mannose, maltose and melibiose, and negative reactions are observed for symbiotic growth, urease, ornithine decarboxylase and indole. Previous publications have documented that both ubiquinones and demethylmenaquinone were produced by the proposed type strain of the new genus, Michel A/76(T), and that the major polyamine of representative strains (type strain not included) of the genus is 1,3-diaminopropane, spermidine is present in moderate amounts and putrescine and spermine are detectable only in minor amounts. The major fatty acids of strain Michel A/76(T) are C(14 : 0), C(16 : 0), C(16:1)omega7c and summed feature C(14 : 0) 3-OH/iso-C(16 : 1) I. This fatty acid profile is typical for members of the family Pasteurellaceae. The G+C content of DNA of strain Michel A/76(T) was estimated to be 52.5 mol% in a previous investigation. The type strain is P709(T) ( = Michel A/76(T) = CCUG 28028(T) = CIP 110147(T) = CCM 7802(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invariant natural killer T (iNKT) cells undergo canonical, Vα14-Jα18 rearrangement of the T-cell receptor (TCR) in mice; this form of the TCR recognizes glycolipids presented by CD1d. iNKT cells mediate many different immune reactions. Their constitutive activated and memory phenotype and rapid initiation of effector functions after stimulation indicate previous antigen-specific stimulation. However, little is known about this process. We investigated whether symbiotic microbes can determine the activated phenotype and function of iNKT cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents the proceedings of the Biochemical Engineering Symposium held at Kansas State University, June 4, 1971. Since most of the papers will be published elsewhere, only very brief papers are included here. Moreover, several of the projects are still in progress at this time. Request for additional information on projects conducted at the University of Nebraska should be directed to Dr. Peter J. Reilly and for Kansas State University to Dr. L. E. Erickson. ContentsChao, Chih-Cheng, University of Nebraska, "Symbiotic Growth of Actobacter suboxydans and Saccharomyces carlsbergensis in a Chemostat" S.Y. Chiu, Kansas State University, "Model Identification in Mixed Populations Using Continuous Culture Data" Shinji Goto, University of Nebraska, "Symbiotic Growth of Bacteria and Blue Green Algae in a Chemostat" I.C. Kao, Kansas State University, "ATP as a Parameter of Mixed Culture Interaction" Indravadan R. Kothari, University of Nebraska, "Growth of Single Cells of Schizocaccharomyces pombe under Nutrient Limitation" G.C.Y. Chu, Kansas State University, "Experimental Optimization of Biological Waste Treatment Processes" Mark Young, University of Nebraska, "Aerobic Fermentation of Paunch Liquor" P.S. Shah, Kansas State University, "Optimal Control of Growth Processes"