882 resultados para Planning decision support systems
Resumo:
Este trabalho tem por motivação evidenciar a eficiência de redes neurais na classificação de rentabilidade futura de empresas, e desta forma, prover suporte para o desenvolvimento de sistemas de apoio a tomada de decisão de investimentos. Para serem comparados com o modelo de redes neurais, foram escolhidos o modelo clássico de regressão linear múltipla, como referência mínima, e o de regressão logística ordenada, como marca comparativa de desempenho (benchmark). Neste texto, extraímos dados financeiros e contábeis das 1000 melhores empresas listadas, anualmente, entre 1996 e 2006, na publicação Melhores e Maiores – Exame (Editora Abril). Os três modelos foram construídos tendo como base as informações das empresas entre 1996 e 2005. Dadas as informações de 2005 para estimar a classificação das empresas em 2006, os resultados dos três modelos foram comparados com as classificações observadas em 2006, e o modelo de redes neurais gerou o melhor resultado.
Resumo:
Telecommunication is one of the most dynamic and strategic areas in the world. Many technological innovations has modified the way information is exchanged. Information and knowledge are now shared in networks. Broadband Internet is the new way of sharing contents and information. This dissertation deals with performance indicators related to maintenance services of telecommunications networks and uses models of multivariate regression to estimate churn, which is the loss of customers to other companies. In a competitive environment, telecommunications companies have devised strategies to minimize the loss of customers. Loosing customers presents a higher cost than obtaining new ones. Corporations have plenty of data stored in a diversity of databases. Usually the data are not explored properly. This work uses the Knowledge Discovery in Databases (KDD) to establish rules and new models to explain how churn, as a dependent variable, are related to a diversity of service indicators, such as time to deploy the service (in hours), time to repair (in hours), and so on. Extraction of meaningful knowledge is, in many cases, a challenge. Models were tested and statistically analyzed. The work also shows results that allows the analysis and identification of which quality services indicators influence the churn. Actions are also proposed to solve, at least in part, this problem
Resumo:
Nowadays, telecommunications is one of the most dynamic and strategic areas in the world. Organizations are always seeking to find new management practices within an ever increasing competitive environment where resources are getting scarce. In this scenario, data obtained from business and corporate processes have even greater importance, although this data is not yet adequately explored. Knowledge Discovery in Databases (KDD) appears then, as an option to allow the study of complex problems in different areas of management. This work proposes both a systematization of KDD activities using concepts from different methodologies, such as CRISP-DM, SEMMA and FAYYAD approaches and a study concerning the viability of multivariate regression analysis models to explain corporative telecommunications sales using performance indicators. Thus, statistical methods were outlined to analyze the effects of such indicators on the behavior of business productivity. According to business and standard statistical analysis, equations were defined and fit to their respective determination coefficients. Tests of hypotheses were also conducted on parameters with the purpose of validating the regression models. The results show that there is a relationship between these development indicators and the amount of sales
Resumo:
Operating industrial processes is becoming more complex each day, and one of the factors that contribute to this growth in complexity is the integration of new technologies and smart solutions employed in the industry, such as the decision support systems. In this regard, this dissertation aims to develop a decision support system based on an computational tool called expert system. The main goal is to turn operation more reliable and secure while maximizing the amount of relevant information to each situation by using an expert system based on rules designed for a particular area of expertise. For the modeling of such rules has been proposed a high-level environment, which allows the creation and manipulation of rules in an easier way through visual programming. Despite its wide range of possible applications, this dissertation focuses only in the context of real-time filtering of alarms during the operation, properly validated in a case study based on a real scenario occurred in an industrial plant of an oil and gas refinery
Resumo:
This paper presents the construction of a fuzzy environmental quality index for decision support in municipal environmental management. Five groups of indicators were selected in order to obtain an equation that best represented reality in terms of environmental quality. The calculation was carried out using fuzzy mathematical concepts, with the aid of the package Fuzzy Logical Toolbox 2.1 for Matlab ® 6.1, which provides functions and some applications of the theory of fuzzy sets. The work seeks to create a method of inference concerning the nature of urban areas that are unsustainable with respect to the environment, an issue that is often relegated to the background during public policy discussions. The development of this index, together with its implementation and dissemination, could improve public awareness of environmental issues, and promote mobilization towards the use of best practices in local development. © 2010 IEEE.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Este trabalho estuda uma aplicação de um Método Multicritério (AHP do inglês Analytic Hierarchy Process) para analisar os problemas do congestionamento do tráfego aéreo nos aeroportos brasileiros, focando-se na ponte São Paulo-Rio de Janeiro. Primeiramente com um estudo em grupo mediante comparação em pares e posteriormente mediante um estudo individual com ratings. O objetivo deste trabalho será obter a alternativa mais adequada para os interesses do tráfego aéreo de Brasil
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
In der hier vorliegenden Arbeit wurde am Beispiel der Kraut- und Knollenfäule an Kartoffeln Phytophthora infestans und des Kartoffelkäfers Leptinotarsa decemlineata untersucht, ob durch den Einsatz von Geographischen Informationssystemen (GIS) landwirtschaftliche Schader¬reger¬prognosen für jeden beliebigen Kartoffelschlag in Deutschland erstellt werden können. Um dieses Ziel zu erreichen, wurden die Eingangsparameter (Temperatur und relative Luftfeuchte) der Prognosemodelle für die beiden Schaderreger (SIMLEP1, SIMPHYT1, SIMPHYT3 and SIMBLIGHT1) so aufbereitet, dass Wetterdaten flächendeckend für Deutschland zur Verfügung standen. Bevor jedoch interpoliert werden konnte, wurde eine Regionalisierung von Deutschland in Interpolationszonen durchgeführt und somit Naturräume geschaffen, die einen Vergleich und eine Bewertung der in ihnen liegenden Wetterstationen zulassen. Hierzu wurden die Boden-Klima-Regionen von SCHULZKE und KAULE (2000) modifiziert, an das Wetterstationsnetz angepasst und mit 5 bis 10 km breiten Pufferzonen an der Grenze der Interpolationszonen versehen, um die Wetterstationen so häufig wie möglich verwenden zu können. Für die Interpolation der Wetterdaten wurde das Verfahren der multiplen Regression gewählt, weil dieses im Vergleich zu anderen Verfahren die geringsten Abweichungen zwischen interpolierten und gemessenen Daten aufwies und den technischen Anforderungen am besten entsprach. Für 99 % aller Werte konnten bei der Temperaturberechnung Abweichungen in einem Bereich zwischen -2,5 und 2,5 °C erzielt werden. Bei der Berechnung der relativen Luftfeuchte wurden Abweichungen zwischen -12 und 10 % relativer Luftfeuchte erreicht. Die Mittelwerte der Abweichungen lagen bei der Temperatur bei 0,1 °C und bei der relativen Luftfeuchte bei -1,8 %. Zur Überprüfung der Trefferquoten der Modelle beim Betrieb mit interpolierten Wetterdaten wurden Felderhebungsdaten aus den Jahren 2000 bis 2007 zum Erstauftreten der Kraut- und Knollenfäule sowie des Kartoffelkäfers verwendet. Dabei konnten mit interpolierten Wetterdaten die gleichen und auch höhere Trefferquoten erreicht werden, als mit der bisherigen Berechnungsmethode. Beispielsweise erzielte die Berechnung des Erstauftretens von P. infestans durch das Modell SIMBLIGHT1 mit interpolierten Wetterdaten im Schnitt drei Tage geringere Abweichungen im Vergleich zu den Berechnungen ohne GIS. Um die Auswirkungen interpretieren zu können, die durch Abweichungen der Temperatur und der relativen Luftfeuchte entstanden wurde zusätzlich eine Sensitivitätsanalyse zur Temperatur und relativen Luftfeuchte der verwendeten Prognosemodelle durchgeführt. Die Temperatur hatte bei allen Modellen nur einen geringen Einfluss auf das Prognoseergebnis. Veränderungen der relativen Luftfeuchte haben sich dagegen deutlich stärker ausgewirkt. So lag bei SIMBLIGHT1 die Abweichung durch eine stündliche Veränderung der relativen Luftfeuchte (± 6 %) bei maximal 27 Tagen, wogegen stündliche Veränderungen der Temperatur (± 2 °C) eine Abweichung von maximal 10 Tagen ausmachten. Die Ergebnisse dieser Arbeit zeigen, dass durch die Verwendung von GIS mindestens die gleichen und auch höhere Trefferquoten bei Schaderregerprognosen erzielt werden als mit der bisherigen Verwendung von Daten einer nahegelegenen Wetterstation. Die Ergebnisse stellen einen wesentlichen Fortschritt für die landwirtschaftlichen Schaderregerprognosen dar. Erstmals ist es möglich, bundesweite Prognosen für jeden beliebigen Kartoffelschlag zur Bekämpfung von Schädlingen in der Landwirtschaft bereit zu stellen.
Resumo:
In genere, negli studi di vocazionalità delle colture, vengono presi in considerazione solo variabili ambientali pedo-climatiche. La coltivazione di una coltura comporta anche un impatto ambientale derivante dalle pratiche agronomiche ed il territorio può essere più o meno sensibile a questi impatti in base alla sua vulnerabilità. In questo studio si vuole sviluppare una metodologia per relazionare spazialmente l’impatto delle colture con le caratteristiche sito specifiche del territorio in modo da considerare anche questo aspetto nell’allocazione negli studi di vocazionalità. LCA è stato utilizzato per quantificare diversi impatti di alcune colture erbacee alimentari e da energia, relazionati a mappe di vulnerabilità costruite con l’utilizzo di GIS, attraverso il calcolo di coefficienti di rischio di allocazione per ogni combinazione coltura-area vulnerabile. Le colture energetiche sono state considerate come un uso alternativo del suolo per diminuire l’impatto ambientale. Il caso studio ha mostrato che l’allocazione delle colture può essere diversa in base al tipo e al numero di impatti considerati. Il risultato sono delle mappe in cui sono riportate le distribuzioni ottimali delle colture al fine di minimizzare gli impatti, rispetto a mais e grano, due colture alimentari importanti nell’area di studio. Le colture con l’impatto più alto dovrebbero essere coltivate nelle aree a vulnerabilità bassa, e viceversa. Se il rischio ambientale è la priorità, mais, colza, grano, girasole, e sorgo da fibra dovrebbero essere coltivate solo nelle aree a vulnerabilità bassa o moderata, mentre, le colture energetiche erbacee perenni, come il panico, potrebbero essere coltivate anche nelle aree a vulnerabilità alta, rappresentando cosi una opportunità per aumentare la sostenibilità di uso del suolo rurale. Lo strumento LCA-GIS inoltre, integrato con mappe di uso attuale del suolo, può aiutare a valutarne il suo grado di sostenibilità ambientale.
Resumo:
Il progetto di ricerca è finalizzato allo sviluppo di una metodologia innovativa di supporto decisionale nel processo di selezione tra alternative progettuali, basata su indicatori di prestazione. In particolare il lavoro si è focalizzato sulla definizione d’indicatori atti a supportare la decisione negli interventi di sbottigliamento di un impianto di processo. Sono stati sviluppati due indicatori, “bottleneck indicators”, che permettono di valutare la reale necessità dello sbottigliamento, individuando le cause che impediscono la produzione e lo sfruttamento delle apparecchiature. Questi sono stati validati attraverso l’applicazione all’analisi di un intervento su un impianto esistente e verificando che lo sfruttamento delle apparecchiature fosse correttamente individuato. Definita la necessità dell’intervento di sbottigliamento, è stato affrontato il problema della selezione tra alternative di processo possibili per realizzarlo. È stato applicato alla scelta un metodo basato su indicatori di sostenibilità che consente di confrontare le alternative considerando non solo il ritorno economico degli investimenti ma anche gli impatti su ambiente e sicurezza, e che è stato ulteriormente sviluppato in questa tesi. Sono stati definiti due indicatori, “area hazard indicators”, relativi alle emissioni fuggitive, per integrare questi aspetti nell’analisi della sostenibilità delle alternative. Per migliorare l’accuratezza nella quantificazione degli impatti è stato sviluppato un nuovo modello previsionale atto alla stima delle emissioni fuggitive di un impianto, basato unicamente sui dati disponibili in fase progettuale, che tiene conto delle tipologie di sorgenti emettitrici, dei loro meccanismi di perdita e della manutenzione. Validato mediante il confronto con dati sperimentali di un impianto produttivo, si è dimostrato che tale metodo è indispensabile per un corretto confronto delle alternative poiché i modelli esistenti sovrastimano eccessivamente le emissioni reali. Infine applicando gli indicatori ad un impianto esistente si è dimostrato che sono fondamentali per semplificare il processo decisionale, fornendo chiare e precise indicazioni impiegando un numero limitato di informazioni per ricavarle.
Resumo:
Exposure to combination antiretroviral therapy (cART) can lead to important metabolic changes and increased risk of coronary heart disease (CHD). Computerized clinical decision support systems have been advocated to improve the management of patients at risk for CHD but it is unclear whether such systems reduce patients' risk for CHD.
Resumo:
The management of anemia in patients with chronic renal failure has greatly improved with the availability of recombinant human erythropoietin in the late 1980s, leading to a considerable reduction in mortality and morbidity and to an improvement in quality of life. The findings from recent controlled clinical outcome trials have resulted in a rather narrow, generally accepted therapeutic hematocrit target range. However, currently available dosing algorithms do not permit achievement and maintenance of target values within the therapeutic range in many patients. One possible explanation for this failure may be the ignorance of a finite erythrocyte lifespan not integrated into most algorithms. The purpose of this article is to underline the essential role played by the erythrocyte lifespan in the erythropoietic response to recombinant human erythropoietin and to encourage the integration of this concept in the future development of computer-assisted decision support systems.
Resumo:
Das intelligente Tutorensystem LARGO für die Rechtswissenschaften soll Jurastudenten helfen, Argumentationsstrategien zu lernen. Im verwendeten Ansatz werden Gerichtsprotokolle als Lernmaterialien verwendet: Studenten annotieren diese und erstellen graphische Repräsentationen des Argumentationsverlaufs. Das System kann dabei zur Reflexion über die von Anwälten vorgebrachten Argumente anregen und Lernende auf mögliche Schwächen in ihrer Analyse des Disputs hinweisen. Zur Erkennung von Schwächen verwendet das System Graphgrammatiken und kollaborative Filtermechanismen. Dieser Artikel stellt dar, wie in LARGO auf Basis der Bestimmung eines „Benutzungskontextes“ die Rückmeldungen im System benutzungsadaptiv gestaltet werden. Weiterhin diskutieren wir auf Basis der Ergebnisse einer kontrollierten Studie mit dem System, welche mit Jurastudierenden an der University of Pittsburgh stattfand, in wie weit der automatisch bestimmte Benutzungskontext zur Vorhersage von Lernerfolgen bei Studenten verwendbar ist.