960 resultados para PEROVSKITE THIN-FILMS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thin films were prepared using glass precursors obtained in the ternary system NaPO(3)-BaF(2)-WO(3) and the binary system NaPO(3)-WO(3) with high concentrations of WO(3) (above 40% molar). Vitreous samples have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. Several structural characterizations were performed by Raman spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES) at the tungsten L(I) and L(III) absorption edges. XANES investigations showed that tungsten atoms are only sixfold coordinated (octahedral WO(6)) and that these films are free of tungstate tetrahedral units (WO(4)). In addition, Raman spectroscopy allowed identifying a break in the linear phosphate chains as the amount of WO(3) increases and the formation of P-O-W bonds in the films network indicating the intermediary behavior of WO(6) octahedra in the film network. Based on XANES data, we suggested a new attribution of several Raman absorption bands which allowed identifying the presence of W-O and W=O terminal bonds and a progressive apparition of W-O-W bridging bonds for the most WO(3) concentrated samples (above 40% molar) attributed to the formation of WO(6) clusters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
LiNbO3 thin films were grown on (0001) sapphire substrates by a chemical route, using the polymeric precursor method. The overall process consists of preparing a coating solution from the Pechini process, based on metallic citrate polymerization, the precursor films, deposited by dip coating, are then heat treated to eliminate the organic material and to synthesize the phase. In this work, we studied the influence of the heat treatment on the structural and optical properties of single-layered films. Two routes were also investigated to increase the film thickness: increasing the viscosity of the coating solution and/or increasing the number of successively deposited layers. The x-ray diffraction theta -2 theta scans revealed the c-axis orientation of the single- and multilayered films and showed that efficient crystallization can be obtained at temperatures as low as 400 degreesC, the phi-scan diffraction evidenced the epitaxial growth with two in-plane variants, A microstructural study revealed that the films were crack free, homogeneous, and relatively dense. Finally, the investigation of the optical properties (optical transmittance and refractive index) confirmed the good quality of the films. These results indicate that the polymeric precursor method is a promising process to develop lithium niobate waveguides.
Resumo:
Ferroelectric SrBi2Ta2O9 thin films on Pt/Ti/SiO2/Si were successfully synthesized by the modified polymeric precursor method. The films were deposited by spin coating and crystallized by rapid thermal annealing in a halogen lamp furnace, followed by postannealing at temperatures ranging from 700 degreesC to 800 degreesC in an oxygen atmosphere. Microstructural and phase evaluations were followed by x-ray diffraction and atomic force microscopy. The films displayed spherical grain structures with a superficial roughness of approximately 3-6 nm. The dielectric constant values were 121 and 248 for films treated at 700 degreesC and 800 degreesC, respectively. The P-E curve showed a voltage shift toward the positive side, which was attributed to crystallization under the halogen illumination. The remanent polarization (2P(r)) and coercive field (E-c) were 7.1 muC/cm(2) and 113 kV/cm, and 18.8 muC/cm(2) and 93 kV/cm for the films treated at 700 degreesC and 800 degreesC, respectively. (C) 2001 American Institute of Physics.
Resumo:
Transparent thin films of nanocrystalline anatase were obtained by dip-coating process using an ethanolic suspension of redispersed nanoparticles. This suspension was prepared by sol-gel route and their redispersability achieved by surface grafting of para-toluene-sulfonic acid and acetylacetone. The effects of the acetylacetone content on the powder redispersibility and on the structural evolution of films were determined by small angle X-ray scattering, X-ray reflectometry and X-ray diffraction for different firing temperatures. The results demonstrated that the porous structure of the studied films consist of agglomerates of primary particles with two levels of porosity. The control of the amount of capping ligand allows for a fine-tuning of the average pore size of the dried films. Upon increasing the firing temperature up to 500 degrees C, progressive increase in apparent density, average pore size of films and average crystallite size of powders were observed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We have utilized infra-red and optical absorption measurements, grazing incidence X-ray diffraction (GIXRD) and extended X-ray absorption fine structure (EXAFS) measurements to investigate the influence of hydrogenation on the optical and structural properties of GaAs thin films prepared by rf-magnetron sputtering. Hydrogenation induces distinct changes in the optical properties, namely shifts in the absorption edges and reduction of the Urbach energy. Such modifications are correlated to a reduction in structural disorder as determined by EXAFS and the increase of crystallinity determined by GIXRD. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Electrically detected magnetic resonance (EDMR) and electron paramagnetic resonance (EPR) were used to investigate emeraldine base polyaniline films. The magnetic susceptibility presented a Curie (localized spins)-Pauli (delocalized spins) transition at 240 K, when we also observed a transition in the dependence of the g factor with temperature (T). Peak-to-peak linewidth decreases with increasing temperature, reflecting that motional narrowing limits the hyperfine and dipolar broadening in this polymer. EDMR spectra could only be observed above 250 K in accordance to EPR results. Surface and bulk transport could be separated and their analysis reflected the effect of magnetic interaction with oxygen. (c) 2007 American Institute of Physics.
Resumo:
The coarsening of the nanoporous structure developed in undoped and 3% Sb-doped SnO2 sol-gel dip-coated films deposited on a mica substrate was studied by time-resolved small-angle x-ray scattering (SAXS) during in situ isothermal treatments at 450 and 650 degrees C. The time dependence of the structure function derived from the experimental SAXS data is in reasonable agreement with the predictions of the statistical theory of dynamical scaling, thus suggesting that the coarsening process in the studied nanoporous structures exhibits dynamical self-similar properties. The kinetic exponents of the power time dependence of the characteristic scaling length of undoped SnO2 and 3% Sb-doped SnO2 films are similar (alpha approximate to 0.09), this value being invariant with respect to the firing temperature. In the case of undoped SnO2 films, another kinetic exponent, alpha('), corresponding to the maximum of the structure function was determined to be approximately equal to three times the value of the exponent alpha, as expected for the random tridimensional coarsening process in the dynamical scaling regime. Instead, for 3% Sb-doped SnO2 films fired at 650 degrees C, we have determined that alpha(')approximate to 2 alpha, thus suggesting a bidimensional coarsening of the porous structure. The analyses of the dynamical scaling functions and their asymptotic behavior at high q (q being the modulus of the scattering vector) provided additional evidence for the two-dimensional features of the pore structure of 3% Sb-doped SnO2 films. The presented experimental results support the hypotheses of the validity of the dynamic scaling concept to describe the coarsening process in anisotropic nanoporous systems.
Resumo:
SnO2 thin films were obtained by the sol-gel method starting from inorganic precursor solutions. In this work, we compare the structure of undoped and Sb-doped SnO2 films prepared by dip-coating. The films were deposited on quartz substrates and then fired at different temperatures ranging from 383 up to 1173 K. The density and the thickness of the films were determined by X-ray reflectivity (XRR) and their porous nanostructure was characterized by grazing-incidence small angle X-ray scattering (GISAXS). XRR results corresponding to undoped and Sb-doped samples indicate a monotonous decrease in film thickness when they are fired at increasing temperatures. At same time, the apparent density of undoped samples exhibits a progressive increase while for Sb-doped films it remains invariant up to 973 K and then increases for T = 1173 K. Anisotropic GISAXS patterns of both films, Sb-doped and undoped, fired above 573 K indicate the presence of elongated pores with their major axis perpendicular to the film surface. For all firing temperatures the nanopores in doped samples are larger than in undoped ones. This suggests that Sb-doping favours the pore growth hindering the film densification. At the highest firing temperature (1173 K) this effect is reversed.
Resumo:
Intense photoluminescence in highly disordered strontium titanate amorphous thin films prepared by the polymeric precursor method was observed at room temperature (300 K). The luminescence spectra of SrTiO3 amorphous thin films at room temperature revealed an intense single-emission band in the visible region. X-ray absorption near edge structure was used to probe the local atomic structure of SrTiO3 amorphous and crystalline thin films. Photoluminescence intensity in the 535 nm range was found to be correlated with the presence of non-bridging oxygen defects. A discussion is presented of the nature of this photoluminescence, which may be related to the disordered structure in SrTiO3 amorphous thin films. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
SrBi2Nb2O9 thin films were produced by the polymeric precursor method using an aqueous solution. The crystallization of the films was carried out using a domestic microwave oven by means of a SiC susceptor in order to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are well-adhered, homogeneous and with good specularity, even when treated at 600 degreesC for 10 min. The microstructure and the structure of the films can be tuned by adjusting the crystallization conditions. Depending on the direction of the heat flux it is possible to obtain preferential oriented or polycrystalline films in the microwave oven for 10 min. The microstructure presented a polycrystalline nature with spheroid small mean grain size when the susceptor is placed above the substrate. When the susceptor is placed below the substrate, the films presented platelet grains with mean grain size around 250 nm and a 001 orientation. For comparison, films were also prepared by the conventional method at 700 degreesC for 2 h. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of (235)U, (238)U and (232)Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films.If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box.Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced suggest that it may be better to substitute these films by uranium doped standard glasses calibrated with thicker uranium films (thickness greater than 1.5 x 10(13) mu m).
Resumo:
BiFeO3 thin films free of secondary phases were obtained by the soft chemical solution on Pt(111)/Ti/SiO2/Si substrates after annealing at 500 degrees C for 2 h. The film grown in the (100) direction presented a remanent polarization P-r of 31 mu C/cm(2) at room temperature. Electrical measurements using both quasistatic hysteresis and pulsed polarization confirm the existence of ferroelectricity with a switched polarization of 60-70 mu C/cm(2), Delta P=(P-*-P). Low leakage conduction and an out-of-plane piezoelectric (d(3)) coefficient of 40 pm/V were obtained by the improvement of preparation technology.