981 resultados para Open reduction
Resumo:
Background In 2002/03 the Queensland Government responded to high rates of alcohol-related harm in discrete Indigenous communities by implementing alcohol management plans (AMPs), designed to include supply and harm reduction and treatment measures. Tighter alcohol supply and carriage restrictions followed in 2008 following indications of reductions in violence and injury. Despite the plans being in place for over a decade, no comprehensive independent review has assessed to what level the designed aims were achieved and what effect the plans have had on Indigenous community residents and service providers. This study will describe the long-term impacts on important health, economic and social outcomes of Queensland’s AMPs. Methods/Design The project has two main studies, 1) outcome evaluation using de-identified epidemiological data on injury, violence and other health and social indicators for across Queensland, including de-identified databases compiled from relevant routinely-available administrative data sets, and 2) a process evaluation to map the nature, timing and content of intervention components targeting alcohol. Process evaluation will also be used to assess the fidelity with which the designed intervention components have been implemented, their uptake and community responses to them and their perceived impacts on alcohol supply and consumption, injury, violence and community health. Interviews and focus groups with Indigenous residents and service providers will be used. The study will be conducted in all 24 of Queensland’s Indigenous communities affected by alcohol management plans. Discussion This evaluation will report on the impacts of the original aims for AMPs, what impact they have had on Indigenous residents and service providers. A central outcome will be the establishment of relevant databases describing the parameters of the changes seen. This will permit comprehensive and rigorous surveillance systems to be put in place and provided to communities empowering them with the best credible evidence to judge future policy and program requirements for themselves. The project will inform impending alcohol policy and program adjustments in Queensland and other Australian jurisdictions. The project has been approved by the James Cook University Human Research Ethics Committee (approval number H4967 & H5241).
Resumo:
SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.
Resumo:
An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008. By 2011, both the peak demand and grid supplied electricity consumption had decreased to below pre-intervention levels. This case study research explored the relationship developed between the utility, community and individual consumer from the residential customer perspective through qualitative research of 22 residential households. It is proposed that an energy utility can be highly successful at peak demand reduction by becoming a community member and a peer to residential consumers and developing the necessary trust, access, influence and partnership required to create the responsive environment to change. A peer-community approach could provide policymakers with a pathway for implementing pro-environmental behaviour for low carbon communities, as well as peak demand reduction, thereby addressing government emission targets while limiting the cost of living increases from infrastructure expenditure.
Resumo:
This article elucidates and analyzes the fundamental underlying structure of the renormalization group (RG) approach as it applies to the solution of any differential equation involving multiple scales. The amplitude equation derived through the elimination of secular terms arising from a naive perturbation expansion of the solution to these equations by the RG approach is reduced to an algebraic equation which is expressed in terms of the Thiele semi-invariants or cumulants of the eliminant sequence { Zi } i=1 . Its use is illustrated through the solution of both linear and nonlinear perturbation problems and certain results from the literature are recovered as special cases. The fundamental structure that emerges from the application of the RG approach is not the amplitude equation but the aforementioned algebraic equation. © 2008 The American Physical Society.
Resumo:
We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO 3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.
Resumo:
Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasmaglow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasmaglow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.
Resumo:
Sub-oxide-to-metallic highly-crystalline nanowires with uniformly distributed nanopores in the 3 nm range have been synthesized by a unique combination of the plasma oxidation, re-deposition and electron-beam reduction. Electron beam exposure-controlled oxide → sub-oxide → metal transition is explained using a non-equilibrium model.
Resumo:
A simple, uniquely plasma-enabled and environment-friendly process to reduce the thickness of vertically standing graphenes to only 4–5 graphene layers and arranging them in dense, ultra-large surface area, ultra-open-edge-length, self-organized and interconnected networks is demonstrated. The approach for the ultimate thickness reduction to 1–2 graphene layers is also proposed. The vertical graphene networks are optically transparent and show tunable electric properties from semiconducting to semi-metallic and metallic at room and near-room temperature, thus recovering semi-metallic properties of a single-layer graphene.
Resumo:
Using density functional theory, we have investigated the catalytic properties of bimetallic complex catalysts PtlAum(CO)n (l + m = 2, n = 1–3) in the reduction of SO2 by CO. Due to the strong coupling between the C-2p and metal 5d orbitals, pre-adsorption of CO molecules on the PtlAum is found to be very effective in not only reducing the activation energy, but also preventing poisoning by sulfur. As result of the coupling, the metal 5d band is broadened and down-shifted, and charge is transferred from the CO molecules to the PtlAum. As SO2 is adsorbed on the catalyst, partial charge moves to the anti-σ bonding orbitals between S and O in SO2, weakening the S–O bond strength. This effect is enhanced by pre-adsorbing up to three CO molecules, therefore the S–O bonds become vulnerable. Our results revealed the mechanism of the excellent catalytic properties of the bimetallic complex catalysts.
Resumo:
The catalytic activities, to the reduction of SO2 by CO, of clusters PtlAum (l + m = 2) with or without preadsorbing CO molecules are investigated using first-principles density functional theory. We find that the PtAu(CO)n (n = 1–3) clusters show more excellent catalytic properties than either pure metallic catalysts. Preadsorption of CO to the catalysts could effectively avoid platinum-based catalyst sulfur poisoning; as more CO molecules preadsorbed to the catalysts, the energy barriers for the carbonyl sulfide (COS) molecule’s desorption from the catalyst are remarkably decreased. We propose an ideal catalytic cycle to simultaneously get rid of SO2 and CO over the catalysts PtAu(CO)3.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This research study investigates a novel way to identify potential efficiency gains in business operations by observing how they are carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how they can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A genetic algorithm-based approach is proposed to explore and assess alternative process execution scenarios, where the objective function is represented by a comprehensive cost structure that captures different process dimensions. Experiments conducted with different variants of the genetic algorithm evaluate the approach's feasibility. The findings demonstrate that a genetic algorithm-based approach is able to make use of cost reduction as a way to identify improved execution scenarios in terms of reduced case durations and increased resource utilisation. The ultimate aim is to utilise cost-related insights gained from such improved scenarios to put forward recommendations for reducing process-related cost within organisations.
Resumo:
Sleep disruption strongly influences daytime functioning; resultant sleepiness is recognised as a contributing risk-factor for individuals performing critical and dangerous tasks. While the relationship between sleep and sleepiness has been heavily investigated in the vulnerable sub-populations of shift workers and patients with sleep disorders, postpartum women have been comparatively overlooked. Thirty-three healthy, postpartum women recorded every episode of sleep and wake each day during postpartum weeks 6, 12 and 18. Although repeated measures analysis revealed there was no significant difference in the amount of nocturnal sleep and frequency of night-time wakings, there was a significant reduction in sleep disruption, due to fewer minutes of wake after sleep onset. Subjective sleepiness was measured each day using the Karolinska Sleepiness Scale; at the two earlier time points this was significantly correlated with sleep quality but not to sleep quantity. Epworth Sleepiness Scores significantly reduced over time; however, during week 18 over 50% of participants were still experiencing excessive daytime sleepiness (Epworth Sleepiness Score ≥12). Results have implications for health care providers and policy makers. Health care providers designing interventions to address sleepiness in new mothers should take into account the dynamic changes to sleep and sleepiness during this initial postpartum period. Policy makers developing regulations for parental leave entitlements should take into consideration the high prevalence of excessive daytime sleepiness experienced by new mothers, ensuring enough opportunity for daytime sleepiness to diminish to a manageable level prior to reengagement in the workforce.
Resumo:
This paper will report on the “wicked” problems encountered when designing an online course with bounded content in an unbounded learning environment. It will describe the dilemmas faced and decisions made by academics in an Australian university challenged by an institutional initiative to design radical, disruptive learning experiences making use of readily available online media. This bounded/unbounded environment demands new roles for instructors in adopting innovative pedagogies and teaching and learning strategies. It also creates changing and challenging roles for course designers as they deal with ill-defined parameters and unknown audiences. In this paper, we propose a novel methodology for making curricular decisions in ill-defined spaces.
Resumo:
This study reports the synthesis, characterization and application of nano zero-valent iron (nZVI). The nZVI was produced by a reduction method and compared with commercial available ZVI powder for Pb2+ removal from aqueous phase. Comparing with commercial ZVI, the laboratory made nZVI powder has a much higher specific surface area. XRD patterns have revealed zero valent iron phases in two ZVI materials. Different morphologies have been observed using SEM and TEM techniques. EDX spectrums revealed even distribution of Pb on surface after reaction. The XPS analysis has confirmed that immobilized lead was present in its zero-valent and bivalent forms. ‘Core-shell’ structure of prepared ZVI was revealed based on combination of XRD and XPS characterizations. In addition, comparing with Fluka ZVI, this lab made nZVI has much higher reactivity towards Pb2+ and within just 15 mins 99.9% removal can be reached. This synthesized nano ZVI material has shown great potential for heavy metal immobilization from waste water.
Resumo:
Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission.